当前位置: 首页 > news >正文

idea开发 java web 酒店推荐系统bootstrap框架开发协同过滤算法web结构java编程计算机网页

一、源码特点
 java 酒店推荐推荐系统是一套完善的完整信息系统,结合java web开发和bootstrap UI框架完成本系统 采用协同过滤算法进行推荐 ,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。
前段主要技术 css jquery  bootstrap UI框架
后端主要技术 java jsp
数据库 mysql
开发工具 IDEA  JDK1.8

java web基于协同过滤酒店推荐系统1


二、功能介绍
前台功能:
1)系统首页
2)公告浏览
3)酒店浏览、查看酒店详情 ,系统并记录用户浏览记录,系统采用协同过滤算法,根据用户的行为习惯进行推荐其他酒店
4)客房预定、入住、查看订单
5)用户注册、登录


后台功能:
(1)管理员管理:对管理员信息进行添加、删除、修改和查看
(2)用户管理:对用户信息进行添加、删除、修改和查看
(3)员工管理:对员工信息进行添加、删除、修改和查看
(4)公告管理:对公告信息进行添加、删除、修改和查看
(5)酒店管理:对酒店信息进行添加、删除、修改和查看
(6)浏览管理:对浏览信息进行添加、删除、修改和查看
(7)客房类型管理:对客房类型信息进行添加、删除、修改和查看
(8)客房管理:对客房信息进行添加、删除、修改和查看
(9)预定管理:对预定信息进行添加、删除、修改和查看
(10)入住管理:对入住信息进行添加、删除、修改和查看
(11)商品管理:对商品信息进行添加、删除、修改和查看
(12)订单管理:对订单信息进行删除、修改和查看
(13)订单明细管理:对订单明细信息进行删除、修改和查看
(14)用户登录、个人信息修改

数据库设计

CREATE TABLE `gly` (
`glyid` int(11) NOT NULL auto_increment,
`yhm` VARCHAR(40) default NULL COMMENT '用户名',
`mm` VARCHAR(40) default NULL COMMENT '密码',
`xm` VARCHAR(40) default NULL COMMENT '姓名',  PRIMARY KEY  (`glyid`)
) ENGINE=InnoDB DEFAULT CHARSET=gb2312;
CREATE TABLE `yonghu` (
`yhid` int(11) NOT NULL auto_increment,
`yhm` VARCHAR(40) default NULL COMMENT '用户名',
`mm` VARCHAR(40) default NULL COMMENT '密码',
`xm` VARCHAR(40) default NULL COMMENT '姓名',
`lxdh` VARCHAR(40) default NULL COMMENT '联系电话',
`lxdz` VARCHAR(40) default NULL COMMENT '联系地址',  PRIMARY KEY  (`yhid`)
) ENGINE=InnoDB DEFAULT CHARSET=gb2312;
CREATE TABLE `yuangong` (
`ygid` int(11) NOT NULL auto_increment,
`yhm` VARCHAR(40) default NULL COMMENT '用户名',
`mm` VARCHAR(40) default NULL COMMENT '密码',
`xm` VARCHAR(40) default NULL COMMENT '姓名',
`lxdh` VARCHAR(40) default NULL COMMENT '联系电话',
`jd` VARCHAR(40) default NULL COMMENT '酒店',  PRIMARY KEY  (`ygid`)
) ENGINE=InnoDB DEFAULT CHARSET=gb2312;
CREATE TABLE `gonggao` (
`ggid` int(11) NOT NULL auto_increment,
`bt` VARCHAR(40) default NULL COMMENT '标题',
`nr` VARCHAR(40) default NULL COMMENT '内容',
`fbsj` VARCHAR(40) default NULL COMMENT '发布时间',  PRIMARY KEY  (`ggid`)
) ENGINE=InnoDB DEFAULT CHARSET=gb2312;
CREATE TABLE `jiudian` (
`jdid` int(11) NOT NULL auto_increment,
`jdmc` VARCHAR(40) default NULL COMMENT '酒店名称',
`wz` VARCHAR(40) default NULL COMMENT '位置',
`tp` VARCHAR(40) default NULL COMMENT '图片',
`lxdh` VARCHAR(40) default NULL COMMENT '联系电话',  PRIMARY KEY  (`jdid`)
) ENGINE=InnoDB DEFAULT CHARSET=gb2312;
CREATE TABLE `liulan` (
`llid` int(11) NOT NULL auto_increment,
`jd` VARCHAR(40) default NULL COMMENT '酒店',
`yh` VARCHAR(40) default NULL COMMENT '用户',
`llsj` VARCHAR(40) default NULL COMMENT '浏览时间',  PRIMARY KEY  (`llid`)
) ENGINE=InnoDB DEFAULT CHARSET=gb2312;

代码设计

  int N = scanner.nextInt();  int[][] sparseMatrix = new int[N][N];//建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】  Map<String, Integer> userItemLength = new HashMap();//存储每一个用户对应的不同物品总数  eg: A 3  Map<String, Set<String>> itemUserCollection = new HashMap();//建立物品到用户的倒排表 eg: a A B  Set<String> items = new HashSet();//辅助存储物品集合  Map<String, Integer> userID = new HashMap();//辅助存储每一个用户的用户ID映射  Map<Integer, String> idUser = new HashMap();//辅助存储每一个ID对应的用户映射  System.out.println("Input user--items maping infermation:<eg:A a b d>");  scanner.nextLine();  for(int i = 0; i < N ; i++){//依次处理N个用户 输入数据  以空格间隔  String[] user_item = scanner.nextLine().split(" ");  int length = user_item.length;  userItemLength.put(user_item[0], length-1);//eg: A 3  userID.put(user_item[0], i);//用户ID与稀疏矩阵建立对应关系  idUser.put(i, user_item[0]);  //建立物品--用户倒排表  for(int j = 1; j < length; j ++){  if(items.contains(user_item[j])){//如果已经包含对应的物品--用户映射,直接添加对应的用户  itemUserCollection.get(user_item[j]).add(user_item[0]);  }else{//否则创建对应物品--用户集合映射  items.add(user_item[j]);  itemUserCollection.put(user_item[j], new HashSet<String>());//创建物品--用户倒排关系  itemUserCollection.get(user_item[j]).add(user_item[0]);  }  }  }  System.out.println(itemUserCollection.toString());  //计算相似度矩阵【稀疏】  Set<Entry<String, Set<String>>> entrySet = itemUserCollection.entrySet();  Iterator<Entry<String, Set<String>>> iterator = entrySet.iterator();  while(iterator.hasNext()){  Set<String> commonUsers = iterator.next().getValue();  for (String user_u : commonUsers) {  for (String user_v : commonUsers) {  if(user_u.equals(user_v)){  continue;  }  sparseMatrix[userID.get(user_u)][userID.get(user_v)] += 1;//计算用户u与用户v都有正反馈的物品总数  }  }  }  System.out.println(userItemLength.toString());  System.out.println("Input the user for recommendation:<eg:A>");  String recommendUser = scanner.nextLine();  System.out.println(userID.get(recommendUser));  //计算用户之间的相似度【余弦相似性】  int recommendUserId = userID.get(recommendUser);  for (int j = 0;j < sparseMatrix.length; j++) {  if(j != recommendUserId){  System.out.println(idUser.get(recommendUserId)+"--"+idUser.get(j)+"相似度:"+sparseMatrix[recommendUserId][j]/Math.sqrt(userItemLength.get(idUser.get(recommendUserId))*userItemLength.get(idUser.get(j))));  }  }  //计算指定用户recommendUser的物品推荐度  for(String item: items){//遍历每一件物品  Set<String> users = itemUserCollection.get(item);//得到购买当前物品的所有用户集合  if(!users.contains(recommendUser)){//如果被推荐用户没有购买当前物品,则进行推荐度计算  double itemRecommendDegree = 0.0;  for(String user: users){  itemRecommendDegree += sparseMatrix[userID.get(recommendUser)][userID.get(user)]/Math.sqrt(userItemLength.get(recommendUser)*userItemLength.get(user));//推荐度计算  }  System.out.println("The item "+item+" for "+recommendUser +"'s recommended degree:"+itemRecommendDegree);  }  }  

三、注意事项
1、管理员账号:admin密码:admin 数据库配置文件DBO.java
2、开发环境为IDEA开发,数据库为mysql,使用java语言开发。
3、数据库文件名是jspjdtj.sql 系统名称jdtj
4、地址:qt/index.jsp 

四系统实现


 

代码下载

https://download.csdn.net/download/qq_41221322/89064345

需要源码 其他的定制服务  下方联系卡片↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

http://www.lryc.cn/news/332965.html

相关文章:

  • Linux——线程控制
  • 【Leetcode 347】,前k个高频元素,小根堆的调整
  • 【图论】【分类讨论】LeetCode3017按距离统计房屋对数目
  • 浅谈Yum 安装和 源码安装
  • JavaEE初阶Day 3:多线程(1)
  • gutil140.dll是什么?gutil140.dll无法继续执行的解决方法
  • 在CentOS 7上安装Python 3.7.7
  • 基于SpringBoot Vue宠物领养系统
  • ip命令
  • 【Kaggle】练习赛《鲍鱼年龄预测》(上)
  • Ruby 之交租阶段信息生成
  • RUST语言值所有权之内存复制与移动
  • 【Django学习笔记(三)】BootStrap介绍
  • ClickHouse开发相关(UDAF)
  • MySql并发事务问题
  • Windows下Docker创建Mysql5.7
  • Redis(性能管理、主从复制、哨兵模式)概述及部署
  • LabVIEW挖坑指南
  • docker容器环境安装记录(MAC M1)(完善中)
  • Linux 常用命令(持续更新中...)
  • xss.pwnfunction-Jefff
  • java——文件上传
  • RCE(远程命令执行)漏洞详解
  • K8S - Deployment 的版本回滚
  • 53 v-bind 和 v-model 的实现和区别
  • VMware-16.0配置虚拟机网络模式
  • element-ui badge 组件源码分享
  • MySQL中日期有关函数
  • jdbc工具类
  • Svelte Web 框架介绍