当前位置: 首页 > news >正文

深度学习理论基础(三)封装数据集及手写数字识别

目录

  • 前期准备
  • 一、制作数据集
    • 1. excel表格数据
    • 2. 代码
  • 二、手写数字识别
    • 1. 下载数据集
    • 2. 搭建模型
    • 3. 训练网络
    • 4. 测试网络
    • 5. 保存训练模型
    • 6. 导入已经训练好的模型文件
    • 7. 完整代码

前期准备

必须使用 3 个 PyTorch 内置的实用工具(utils):
⚫ DataSet 用于封装数据集;
⚫ DataLoader 用于加载数据不同的批次;
⚫ random_split 用于划分训练集与测试集。
  

一、制作数据集

  在封装我们的数据集时,必须继承实用工具(utils)中的 DataSet 的类,这个过程需要重写__init__和__getitem__、__len__三个方法,分别是为了加载数据集、获取数据索引、获取数据总量。我们通过代码读取excel表格里面的数据作为数据集。

1. excel表格数据

在这里插入图片描述

2. 代码

为了简单演示,我们将表格的第0列作为输入特征,第1列作为输出特征。

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import matplotlib.pyplot as plt# 制作数据集
class MyData(Dataset):      """继承 Dataset 类"""def __init__(self, filepath):super().__init__()df = pd.read_excel(filepath).values       """ 读取excel数据"""arr = df.astype(np.int32)      """转为 int32 类型数组"""ts = torch.tensor(arr)      """数组转为张量"""ts = ts.to('cuda')      """把训练集搬到 cuda 上"""self.X = ts[:, :1]      """获取第0列的所有行做为输入特征"""self.Y = ts[:, 1:2]      """获取第1列的所有行为输出特征"""self.len = ts.shape[0]    """样本的总数"""  def __getitem__(self, index):return self.X[index], self.Y[index]def __len__(self):return self.lenif __name__ == '__main__':		"""获取数据集"""Data = MyData('label.xlsx')print(Data.X[0])       """输出为:tensor([1020741172], device='cuda:0', dtype=torch.int32)"""print(Data.Y[0])       """输出为:tensor([1], device='cuda:0', dtype=torch.int32) """print(Data.__len__())  """输出为:233 """"""划分训练集与测试集"""train_size = int(len(Data) * 0.7) # 训练集的样本数量test_size = len(Data) - train_size # 测试集的样本数量train_Data, test_Data = random_split(Data, [train_size, test_size])"""批次加载器"""""" 第一个参数:表示要加载的数据集,即之前划分好的 train_Data或test_Data 。"""""" 第二个参数:表示在每个 epoch(训练周期)开始之前是否重新洗牌数据。在训练过程中,通常会将数据进行洗牌,以确保模型能够学习到更加泛化的特征。而测试数据不需要重新洗牌,因为测试集仅用于评估模型的性能,不涉及模型参数的更新"""""" 第三个参数:表示每个批次中的样本数量为 32。也就是说,每次迭代加载器时,它会从训练数据集中加载128个样本。"""train_loader = DataLoader(train_Data, shuffle=True, batch_size=128)test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)"""打印第一个批次的输入与输出特征"""for inputs, targets in train_loader:print(inputs)print(targets)

二、手写数字识别

1. 下载数据集

在下载数据集之前,要设定转换参数:transform,该参数里解决两个问题:
⚫ ToTensor:将图像数据转为张量,且调整三个维度的顺序为 (C-W-H);C表示通道数,二维灰度图像的通道数为 1,三维 RGB 彩图的通道数为 3。
⚫ Normalize:将神经网络的输入数据转化为标准正态分布,训练更好;根据统计计算,MNIST 训练集所有像素的均值是 0.1307、标准差是 0.3081

"""数据转换为tensor数据"""
transform_data = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.1307, 0.3081)
])"""下载训练集与测试集"""
train_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist/', """下载路径"""train = True, """训练集"""download = True,  """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)
test_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist_test/', """下载路径"""train = False, """非训练集,也就是测试集"""download = True, """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)"""批次加载器"""
train_loader = DataLoader(train_Data, shuffle=True, batch_size=64)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)

在这里插入图片描述

2. 搭建模型

class DNN(nn.Module):def __init__(self):''' 搭建神经网络各层 '''super(DNN,self).__init__()self.net = nn.Sequential( # 按顺序搭建各层nn.Flatten(), # 把图像铺平成一维nn.Linear(784, 512), nn.ReLU(), # 第 1 层:全连接层nn.Linear(512, 256), nn.ReLU(), # 第 2 层:全连接层nn.Linear(256, 128), nn.ReLU(), # 第 3 层:全连接层nn.Linear(128, 64), nn.ReLU(), # 第 4 层:全连接层nn.Linear(64, 10) # 第 5 层:全连接层)def forward(self, x):''' 前向传播 '''y = self.net(x) # x 即输入数据return y # y 即输出数据

3. 训练网络

"""实例化模型"""
model = DNN().to('cuda:0') def train_net():"""1.损失函数的选择"""loss_fn = nn.CrossEntropyLoss()  # 自带 softmax 激活函数"""2.优化算法的选择"""learning_rate = 0.01              # 设置学习率optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5                 # momentum(动量),它使梯度下降算法有了力与惯性)"""3.训练"""epochs = 5losses = []         """记录损失函数变化的列表"""for epoch in range(epochs):for (x, y) in train_loader:     """从批次加载器中获取小批次的x与y"""x, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x)               #将样本放入实例化的模型中,这里自动调用forward方法。loss = loss_fn(Pred, y)       # 计算损失函数losses.append(loss.item())    # 记录损失函数的变化optimizer.zero_grad()         # 清理上一轮滞留的梯度loss.backward()               # 一次反向传播optimizer.step()              # 优化内部参数"""4.画损失图"""Fig = plt.figure()plt.plot(range(len(losses)), losses)plt.show()

损失图如下:
在这里插入图片描述

4. 测试网络

测试网络不需要回传梯度。

"""实例化模型"""
model = DNN().to('cuda:0') def test_net():correct = 0total = 0with torch.no_grad():                                #该局部关闭梯度计算功能for (x, y) in test_loader:                       #从批次加载器中获取小批次的x与yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model (x)                             #将样本放入实例化的模型中,这里自动调用forward方法。_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')

在这里插入图片描述

5. 保存训练模型

在保存模型前,必须要先进行训练网络去获取和优化模型参数。

if __name__ == '__main__':model = DNN().to('cuda:0') train_net()torch.save(model,'old_model.pth')

6. 导入已经训练好的模型文件

导入训练好的模型文件,我们就不需要再进行训练网络,直接使用测试网络来测试即可。
new_model使用了原有模型文件,我们就需要在测试网络的前向传播中的模型修改为 new_model去进行测试。如下:

"""  假设我们之前保存好的模型文件为:'old_model.pth'  """def test_net():correct = 0total = 0with torch.no_grad():                                #该局部关闭梯度计算功能for (x, y) in test_loader:                       #从批次加载器中获取小批次的x与yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = new_model (x)                         #将样本放入实例化的模型中,这里自动调用forward方法。_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')if __name__ == '__main__':new_model = torch.load('old_model.pth')test_net()

7. 完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt"""------------1.下载数据集----------"""
"""数据转换为tensor数据"""
transform_data = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.1307, 0.3081)
])"""下载训练集与测试集"""
train_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist/', """下载路径"""train = True, """训练集"""download = True,  """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)
test_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist_test/', """下载路径"""train = False, """非训练集,也就是测试集"""download = True, """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)"""批次加载器"""
train_loader = DataLoader(train_Data, shuffle=True, batch_size=64)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)"""---------------2.定义模型------------"""
class DNN(nn.Module):def __init__(self):''' 搭建神经网络各层 '''super(DNN,self).__init__()self.net = nn.Sequential( # 按顺序搭建各层nn.Flatten(), # 把图像铺平成一维nn.Linear(784, 512), nn.ReLU(), # 第 1 层:全连接层nn.Linear(512, 256), nn.ReLU(), # 第 2 层:全连接层nn.Linear(256, 128), nn.ReLU(), # 第 3 层:全连接层nn.Linear(128, 64), nn.ReLU(), # 第 4 层:全连接层nn.Linear(64, 10) # 第 5 层:全连接层)def forward(self, x):''' 前向传播 '''y = self.net(x) # x 即输入数据return y # y 即输出数据"""-------------3.训练网络-----------"""
def train_net():# 损失函数的选择loss_fn = nn.CrossEntropyLoss()  # 自带 softmax 激活函数# 优化算法的选择learning_rate = 0.01  # 设置学习率optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5)epochs = 5losses = []  # 记录损失函数变化的列表for epoch in range(epochs):for (x, y) in train_loader:  # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x)  # 一次前向传播(小批量)loss = loss_fn(Pred, y)  # 计算损失函数losses.append(loss.item())  # 记录损失函数的变化optimizer.zero_grad()  # 清理上一轮滞留的梯度loss.backward()  # 一次反向传播optimizer.step()  # 优化内部参数"""Fig = plt.figure()""""""plt.plot(range(len(losses)), losses)""""""plt.show()""""""--------------------4.测试网络-----------"""
def test_net():correct = 0total = 0with torch.no_grad():  						 	#该局部关闭梯度计算功能for (x, y) in test_loader: 				 	#获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = new_model(x)  				 	#一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')if __name__ == '__main__':""" ------- 5.保存模型文件------""""""   model = DNN().to('cuda:0')        """"""   train_net()                       """"""   torch.save(model,'old_model.pth') """""" ------- 6.加载模型文件 ----- """new_model = torch.load('old_model.pth')test_net()
http://www.lryc.cn/news/332241.html

相关文章:

  • vue3+eachrts饼图轮流切换显示高亮数据
  • UTONMOS:AI+Web3+元宇宙数字化“三位一体”将触发经济新爆点
  • 开始焦虑了
  • 数据结构和算法:十大排序
  • LLaMA-Factory微调(sft)ChatGLM3-6B保姆教程
  • Web安全-浏览器安全策略及跨站脚本攻击与请求伪造漏洞原理
  • 蓝桥杯B组C++省赛——飞机降落(DFS)
  • Java 中的 Map集合
  • 基于springboot大学生兼职平台管理系统(完整源码+数据库)
  • C#学生信息管理系统
  • 双机 Cartogtapher 建图文件配置
  • VMware提示 该虚拟机似乎正在使用中,如何解决?
  • 阿里云短信服务业务
  • ElasticSearch的DSL查询
  • 每天定时杀spark进程
  • win10 安装kubectl,配置config连接k8s集群
  • Calico IPIP和BGP TOR的数据包走向
  • 静态成员主要用于提供与类本身相关的功能或数据,有什么应用场景
  • 在线考试|基于Springboot的在线考试管理系统设计与实现(源码+数据库+文档)
  • C语言-----数据在内存中的存储(1)
  • Ribbon有哪些负载均衡策略
  • websocket多级nginx代理
  • 【python从入门到精通】-- 第四战:语句汇总
  • 【NC50937】货仓选址
  • Nginx配置使用笔记
  • GridLayoutManager 中的一些坑
  • 算法实验二 矩阵最小路径和 LIS
  • Apache Paimon实时数据糊介绍
  • 计算机网络:数据链路层 - 可靠传输协议
  • 苍穹外卖07(缓存菜品,SpringCache,缓存套餐,添加购物车菜品和套餐多下单,查看购物车,清除购物车,删除购物车中一个商品)