当前位置: 首页 > news >正文

代码随想录刷题day42| 01背包理论基础分割等和子集

文章目录

  • day41学习内容
  • 一、 01背包之二维数组解法
    • 1.1、什么是01背包
    • 1.2、动态规划五部曲
      • 1.2.1、 确定dp数组(dp table)以及下标的含义
      • 1.2.2、确定递推公式
      • 1.2.3、 dp数组如何初始化
      • 1.2.4、确定遍历顺序
      • 1.2.5、计算并返回最终结果
  • 二、 01背包之一维数组解法
    • 2.1、动态规划五部曲
      • 2.1.1、 确定dp数组(dp table)以及下标的含义
      • 2.1.2、确定递推公式
      • 2.1.3、 dp数组如何初始化
      • 2.1.4、确定遍历顺序
        • 二维动态规划
        • 从二维到一维的转化
        • 为什么要逆序更新
        • 具体示例
  • 三、 分割等和子集
    • 3.1、动态规划五部曲
      • 3.1.1、 确定dp数组(dp table)以及下标的含义
      • 3.1.2、确定递推公式
      • 3.1.3、 dp数组如何初始化
      • 3.1.4、确定遍历顺序
      • 3.1.5、计算并返回最终结果
    • 1.3、代码
  • 总结
    • 1.感想
    • 2.思维导图


day41学习内容

day41主要内容

  • 01背包之二维数组解法
  • 01背包之一维数组解法
  • 分割等和子集

声明
本文思路和文字,引用自《代码随想录》

一、 01背包之二维数组解法

1.1、什么是01背包

1.2、动态规划五部曲

1.2.1、 确定dp数组(dp table)以及下标的含义

- 考虑前i个物品,当背包容量为j时的最大价值。或者说
- 从物品0到i之间,任意取一个物品放到重量为j的背包中的最大价值

1.2.2、确定递推公式

在0-1背包问题中,dp[i][j]通常表示在考虑前i个物品,且背包容量为j时,能够获得的最大价值。当我们在处理第i个物品时,面临的选择是:放入这个物品,或者不放入这个物品。

在0-1背包问题中,递推公式通常写为:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])

其中:

  • dp[i][j]:考虑前i个物品,当背包容量为j时的最大价值。
  • dp[i-1][j]:不放入第i个物品时,考虑前i-1个物品,背包容量为j的最大价值。
    • 如果选择不放入第i个物品,那么背包中的物品组合应该与考虑前i-1个物品时背包容量为j的情况相同。因为我们没有使用额外的容量来放置第i个物品,所以背包的容量和内容保持不变,相当于在做决策时忽略了第i个物品。
    • 因此,此时的公式为,dp[i-1][j],表示的是在不选择第i个物品的情况下,考虑前i-1个物品时能够获得的最大价值。这反映了一个关键的动态规划概念,即利用子问题的解来构建更大问题的解。
  • dp[i-1][j-w[i]] + v[i]:放入第i个物品时的情况,这里w[i]是第i个物品的重量,v[i]是第i个物品的价值。这表示,如果放入第i个物品,那么背包剩余容量为j-w[i],对应的最大价值应加上第i个物品的价值v[i]

1.2.3、 dp数组如何初始化

在01背包问题中,dp[i][j]表示在前i个物品中选择一些物品,使得这些物品的总重量不超过j时,这些物品的最大总价值。因此,dp[0][j]表示当没有物品可以选择时,任何容量j的背包的最大价值都是0,因为我们什么也装不进去。同样地,dp[i][0]表示当背包的容量为0时,不论有多少物品可供选择,我们都无法装入任何物品,所以最大总价值为0。

1.2.4、确定遍历顺序

从前向后遍历,没啥好说的

1.2.5、计算并返回最终结果


二、 01背包之一维数组解法

2.1、动态规划五部曲

2.1.1、 确定dp数组(dp table)以及下标的含义

-  dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.1.2、确定递推公式

直接给结论

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

2.1.3、 dp数组如何初始化

dp[0] = [0]

2.1.4、确定遍历顺序

需要逆序遍历。

二维动态规划

假设我们有两个物品,其中:

  • 物品1的重量为w[1] = 2,价值为v[1] = 3
  • 物品2的重量为w[2] = 3,价值为v[2] = 4
  • 背包的总容量为W = 5

我们使用二维数组dp[i][j]来表示考虑到第i个物品时,背包容量为j的最大价值。

初始化dp[0][j] = 0,因为没有物品时价值为0。对于每个物品i,我们遍历所有可能的背包容量j,更新dp[i][j]

从二维到一维的转化

关键点在于观察到更新dp[i][j]时,只需要前一行的信息,即dp[i-1][...]。因此,如果我们能确保在更新dp[j]时,dp[j-w[i]]总是代表加入当前物品前的状态,那么我们就可以只用一维数组来保存所有需要的信息。

为什么要逆序更新

假设我们正向更新,即j从小到大更新。当我们更新dp[j]时,dp[j-w[i]]可能已经被当前物品的加入更新过了,这意味着我们可能会错误地将同一个物品加入背包多次。

逆序更新(即j从大到小更新)确保在更新dp[j]时,dp[j-w[i]]还没有被当前物品的加入影响,因为我们还没有到达更小的j值。这样,每个物品只会被考虑加入一次。

具体示例

让我们以背包总容量W = 5为例,来具体分析这个过程。假设我们现在处理物品1(重量2,价值3)。

  • 在二维动态规划中,我们可能得到类似dp[1][j]的更新,其中j从1到5。

  • 转换为一维后,我们同样需要更新dp[j],但是逆序处理。

对于物品1,初始dp[0, 0, 0, 0, 0, 0](考虑容量从0到5)。

  • 正向考虑,如果我们先更新dp[2]为3(加入物品1),当我们到达dp[4]时,可能错误地再次考虑加入物品1,因为它看到的dp[2]已经反映了物品1的加入。

  • 逆序更新,我们从dp[5]开始往回看。当更新dp[5]时,dp[3](对应j-w[i])还未被更新,确保我们正确地只考虑加入物品1一次。

三、 分割等和子集

416.原题链接

3.1、动态规划五部曲

3.1.1、 确定dp数组(dp table)以及下标的含义

- ,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。

3.1.2、确定递推公式

dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);

3.1.3、 dp数组如何初始化

dp[0] = 0,java中新建数组,会自动赋值所有的元素的值都为0

3.1.4、确定遍历顺序

逆序遍历

3.1.5、计算并返回最终结果

return dp[target] == target;

1.3、代码

class Solution {public boolean canPartition(int[] nums) {if(nums == null || nums.length == 0) return false;int n = nums.length;int sum = 0;for(int num : nums) {sum += num;}//总和为奇数,不能平分if(sum % 2 != 0) return false;int target = sum / 2;//开始背包逻辑int[] dp = new int[target + 1];for(int i = 0; i < n; i++) {for(int j = target; j >= nums[i]; j--) {// 此时价值为nums[i],重量也为nums[i]dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}return dp[target] == target;}
}

总结

1.感想

  • 好难好难。。。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

http://www.lryc.cn/news/330520.html

相关文章:

  • Python文件操作命令
  • CSS面试题---基础
  • OpenHarmony实战开发-分布式数据管理
  • 微服务(基础篇-007-RabbitMQ部署指南)
  • C语言一维数组及二维数组详解
  • 11.图像边缘检测的原理与实现
  • RVM安装ruby笔记
  • 电力系统负荷预测方法
  • electron打包桌面版.exe之vue项目踩坑(vue3+electron 解决打包后首页打开空白,打包后路由不跳转及请求不到后端数据等问题)
  • MySQL学习笔记(持续更行ing)
  • 服务器配置Huggingface并git clone模型和文件
  • Rust 开发的高性能 HTTP 请求工具
  • Android Studio 通过 WIFI 调试手机 app
  • RabbitMQ高级笔记
  • 【Qt】QtCreator交叉编译环境配置Qt mkspec
  • 点点数据K参数加密逆向分析(RPC方案跟加密算法还原)
  • 考研数学|《1800》+《660》精华搭配混合用(经验分享)
  • 【Redis 二】Redis客户端(Jedis、SpringDataRedis、RedisTemplate)
  • Java中Filter和Interceptor的区别
  • 记一次 pdfplumber 内存泄漏导致的服务器宕机
  • SpringBoot单元测试剖析
  • 【华为OD机试C++】计算某字符出现次数
  • ORA-01779 BYPASS_UJVC 11.2后废弃了
  • 验证码demo(简单实现)
  • C#面:虚函数和抽象函数的区别
  • Vidmore Video Fix for Mac 视频修复工具
  • Docker容器与虚拟化技术:OpenEuler 部署 Docker UI
  • 328——二维矩阵值变为1最小操作次数 next、nextInt、nextLine
  • HarmonyOS 应用开发之同步任务开发指导 (TaskPool和Worker)
  • 基于MiniExcel的三种常用导出Excel方法(固定列导出、动态列导出、按模板导出)