当前位置: 首页 > news >正文

【中文视觉语言模型+本地部署 】23.08 阿里Qwen-VL:能对图片理解、定位物体、读取文字的视觉语言模型 (推理最低12G显存+)

项目主页:https://github.com/QwenLM/Qwen-VL
通义前问网页在线使用——(文本问答,图片理解,文档解析):https://tongyi.aliyun.com/qianwen/
论文v3. : 一个全能的视觉语言模型
23.10 Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond

Qwen-VL-Chat 部分示例:支持多个图像输入、多轮对话、文本阅读、定位、细粒度识别和理解能力
在这里插入图片描述

一、Qwen-VL简介

Qwen-VL 是阿里基于语言模型Qwen-7B(LLMs),研发的大规模视觉语言模型(Large Vision Language Model, LVLM

Qwen-VL = 大语言模型(Qwen-7B) + 视觉图片特征编码器(Openclip’s ViT-bigG) + 位置感知视觉语言适配器(可训练Adapter)+约15亿训练数据+多轮训练

功能上:

  1. 支持多语言,特别是中英文对话
  2. 支持多个图像输入
  3. 中英双语的长文本识别
  4. 对图片中物体定位 :能够确定与给定描述相对应的具体区域(也称 grounding)
  5. 相对其他视觉模型,进行对图片更多细节识别和理解

在这里插入图片描述

二、本地部署

下载项目到本地,也可手动下载

git clone https://github.com/QwenLM/Qwen-VL.git

2.1 基础环境安装

根据自己显卡驱动,在pytorch官方选择对应的版本: https://pytorch.org/get-started/previous-versions/

conda create -n  qwen-vl  python=3.10  -yconda activate qwen-vl
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia

2.1.1 其他依赖


conda activate qwen-vl
cd Qwen-VL
pip install -r  requirements.txt

2.1.2 使用modelscope模型

https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary

pip install modelscope -U

2.2 实际测试 (运行后自动下载模型)

启动命令 --server-name 0.0.0.0 表示可局域网访问,输入ip

python web_demo_mm.py --server-name 0.0.0.0

2.2.1 下载模型界面 (约20G)

在这里插入图片描述

2.2.2 启动测试界面

在这里插入图片描述

2.2.3 实测,对图表理解并求和

求和上传图中某一列。
在这里插入图片描述

三、如何训练

阶段一:普通预训练 (pretraining)
14亿大规模、弱标记、网络爬取的图像-文本对(其中3.18亿**中文**文本)

阶段二: 多任务任务微调 (得到Qwen-VL)
约1亿数据,7大任务,图片题词,视觉问答,位置标注、OCR等任务

阶段三: 指令微调(增强对话能力) (训练后得到Qwen-VL-Chat)
将简单的文本图像对,通过手动注释、模型生成和策略串联构建**35W**对话数据
训练过程中混合了多模态和纯文本对话数据,以确保模型在对话能力方面的通用性
在这里插入图片描述

预训练阶段(Pre-training)

数据集从50亿数据中清洗得到14亿数据,其中中文约22.7%,3亿左右

数据集清理标注

  1. 删除纵横比过大的对
  2. 删除图像太小的对
  3. 删除剪辑分数过苛刻的对(特定于数据集)
  4. 删除包含非英语或非汉字的文本对
  5. 删除包含表情符号字符的文本对
  6. 删除文本长度过短或太长的对
  7. 清理文本的 HTML 标记部分
  8. 用某些不规则模式清理文本

在这里插入图片描述

多任务预训练 (Multi-task Pre-training)

约1亿数据,7大任务,图片题词,视觉问答,位置标注、OCR等任务
在这里插入图片描述

训练数据格式 (Data Format of Multi-Task Pre-training)

训练时,黑色文本作为前缀序列,没有损失,蓝色文本作为带有损失的地面真实标签。
在这里插入图片描述

指令微调

训练数据格式

为了更好地适应多图像对话和多个图像输入,我们在不同的图像之前添加了字符串“Picture id:”,其中 id 对应于图像输入对话的顺序。在对话格式方面,我们使用 ChatML (Openai) 格式构建我们的指令调优数据集,其中每个交互的语句都标有两个特殊标记(<im_start> 和<im_end>)以促进对话终止。
在这里插入图片描述

附录

有哪些版本?(商业版本)

模型名模型简介
Qwen-VL-Plus通义千问大规模视觉语言模型增强版。大幅提升细节识别能力和文字识别能力,支持超百万像素分辨率和任意长宽比规格的图像。在广泛的视觉任务上提供卓越的性能。
Qwen-VL-Max通义千问超大规模视觉语言模型。相比增强版,再次提升视觉推理能力和指令遵循能力,提供更高的视觉感知和认知水平。在更多复杂任务上提供最佳的性能。
http://www.lryc.cn/news/330482.html

相关文章:

  • 【Qt 学习笔记】Qt 背景介绍
  • C++递推算法
  • Go项目结构整洁实现|GitHub 3.5k
  • Python读取PDF文字 去掉页眉页脚
  • Linux:入门篇
  • NSSCTF Round#20 Basic 真亦假,假亦真 CSDN_To_PDF V1.2 出题笔记 (附wp+源码)
  • 处理关于 React lazy 白屏的两种方案
  • Nginx 基础
  • C++完美转发(适合小白)
  • 如何创建自己的 Spring Boot Starter 并为其编写单元测试
  • C++ :STL中deque的原理
  • AttributeError: ‘Namespace‘ object has no attribute ‘EarlyStopping‘
  • 深度学习pytorch——卷积神经网络(持续更新)
  • 【edge浏览器无法登录某些网站,以及迅雷插件无法生效的解决办法】
  • OpenHarmony无人机MAVSDK开源库适配方案分享
  • 模型训练----parser.add_argument添加配置参数
  • 数字未来:探索 Web3 的革命性潜力
  • 群晖NAS使用Docker部署大语言模型Llama 2结合内网穿透实现公网访问本地GPT聊天服务
  • [选型必备基础信息] 存储器
  • C++——C++11线程库
  • 机器学习 | 线性判别分析(Linear Discriminant Analysis)
  • TypeScript-数组、函数类型
  • Python深度学习034:cuda的环境如何配置
  • 【论文笔记】Text2QR
  • 【ReadPapers】A Survey of Large Language Models
  • 站群CMS系统
  • landsat8数据产品说明
  • Golang 内存管理和垃圾回收底层原理(二)
  • OpenHarmony:全流程讲解如何编写ADC平台驱动以及应用程序
  • 计算机学生求职简历的一些想法