当前位置: 首页 > news >正文

C# OpenCvSharp 轮廓检测

目录

效果

代码

下载 


效果

代码

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using OpenCvSharp.Extensions;

namespace OpenCvSharp_轮廓检测
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private void button1_Click(object sender, EventArgs e)
        {
            Mat srcImage = Cv2.ImRead("test.jpg");
            Mat dstImage = ToolsFindContours(srcImage);

            Bitmap Bitmap1 = BitmapConverter.ToBitmap(srcImage);
            Bitmap Bitmap2 = BitmapConverter.ToBitmap(dstImage);

            pictureBox1.Image = Bitmap1;
            pictureBox2.Image = Bitmap2;
        }


        /// <summary>
        /// 查找轮廓
        /// </summary>
        /// <param name="srcImage"></param>
        /// <returns></returns>
        public static Mat ToolsFindContours(Mat srcImage)
        {
            // 转化为灰度图
            Mat src_gray = new Mat();
            Cv2.CvtColor(srcImage, src_gray, ColorConversionCodes.RGB2GRAY);
            // 滤波
            Cv2.Blur(src_gray, src_gray, new OpenCvSharp.Size(3, 3));
            // Canny边缘检测
            Mat canny_Image = new Mat();
            // 输入、输出、最小阀值、最大阀值
            Cv2.Canny(src_gray, canny_Image, 100, 200);
            // 获得轮廓
            OpenCvSharp.Point[][] contours;
            HierarchyIndex[] hierarchly;
            /*
            1.寻找轮廓的图像
            2.返回轮廓数组
            3.层次结构索引
            4.轮廓的检索模式(External只检测外轮廓,List检测所有轮廓,CComp检测所有轮廓并建立两个等级,Tree检测所有轮廓并建立等级树
            5.轮廓近似模式(ApproxNone保存物体边界上所有连续的轮廓点, ApproxSimple仅保存轮廓的拐点信息。CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用Teh-Chin chain 近似算法)
            6.Point偏移量,所有的轮廓信息相对于原始图像对应点的偏移量
            */
            Cv2.FindContours(canny_Image, out contours, out hierarchly, RetrievalModes.Tree, ContourApproximationModes.ApproxNone, new OpenCvSharp.Point(0, 0));
            // 将结果画出并返回结果
            Mat dst_Image = Mat.Zeros(canny_Image.Size(), srcImage.Type());
            for (int i = 0; i < contours.Length; i++)
            {
                // 轮廓的颜色为绿色
                Scalar color = new Scalar(0, 255, 0);
                /*
                1.输入图
                2.表示输入的轮廓组
                3.指明画第几个轮廓
                4.颜色
                5.thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部
                6.线形
                7.轮廓结构信息
                */
                Cv2.DrawContours(dst_Image, contours, i, color, 2, LineTypes.Link8, hierarchly);
            }
            return dst_Image;
        }
    }
}

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using OpenCvSharp.Extensions;namespace OpenCvSharp_轮廓检测
{public partial class Form1 : Form{public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){Mat srcImage = Cv2.ImRead("test.jpg");Mat dstImage = ToolsFindContours(srcImage);Bitmap Bitmap1 = BitmapConverter.ToBitmap(srcImage);Bitmap Bitmap2 = BitmapConverter.ToBitmap(dstImage);pictureBox1.Image = Bitmap1;pictureBox2.Image = Bitmap2;}/// <summary>/// 查找轮廓/// </summary>/// <param name="srcImage"></param>/// <returns></returns>public static Mat ToolsFindContours(Mat srcImage){// 转化为灰度图Mat src_gray = new Mat();Cv2.CvtColor(srcImage, src_gray, ColorConversionCodes.RGB2GRAY);// 滤波Cv2.Blur(src_gray, src_gray, new OpenCvSharp.Size(3, 3));// Canny边缘检测Mat canny_Image = new Mat();// 输入、输出、最小阀值、最大阀值Cv2.Canny(src_gray, canny_Image, 100, 200);// 获得轮廓OpenCvSharp.Point[][] contours;HierarchyIndex[] hierarchly;/*1.寻找轮廓的图像2.返回轮廓数组3.层次结构索引4.轮廓的检索模式(External只检测外轮廓,List检测所有轮廓,CComp检测所有轮廓并建立两个等级,Tree检测所有轮廓并建立等级树5.轮廓近似模式(ApproxNone保存物体边界上所有连续的轮廓点, ApproxSimple仅保存轮廓的拐点信息。CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用Teh-Chin chain 近似算法)6.Point偏移量,所有的轮廓信息相对于原始图像对应点的偏移量*/Cv2.FindContours(canny_Image, out contours, out hierarchly, RetrievalModes.Tree, ContourApproximationModes.ApproxNone, new OpenCvSharp.Point(0, 0));// 将结果画出并返回结果Mat dst_Image = Mat.Zeros(canny_Image.Size(), srcImage.Type());for (int i = 0; i < contours.Length; i++){// 轮廓的颜色为绿色Scalar color = new Scalar(0, 255, 0);/*1.输入图2.表示输入的轮廓组3.指明画第几个轮廓4.颜色5.thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部6.线形7.轮廓结构信息*/Cv2.DrawContours(dst_Image, contours, i, color, 2, LineTypes.Link8, hierarchly);}return dst_Image;}}
}

下载 

Demo下载

http://www.lryc.cn/news/329655.html

相关文章:

  • 阿里云服务器安装SSL证书不起作用的解决方案
  • 【二】【设计模式】建造者模式
  • Linux 系统 CentOS7 上搭建 Hadoop HDFS集群详细步骤
  • 【Python】python+requests+excel+pytest-实现接口自动化实例
  • Django(四)-搭建第一个应用(3)
  • 吴恩达2022机器学习专项课程(一) 4.2 梯度下降实践
  • SQL,group by分组后分别计算组内不同值的数量
  • 关于python中常用命令(持续更新中)
  • JAVA学习笔记21
  • 如何制作Word模板并用Java导出自定义的内容
  • ubuntu 安装配置samba服务器完整教程
  • 【APP_TYC】数据采集案例天眼APP查_查壳脱壳反编译_③
  • 通过MobaXterm工具可视化服务器桌面
  • ctf题目
  • git 更改仓库地址
  • GLTFExporter是一个用于将3D场景导出为glTF格式的JavaScript库。
  • 消息队列经典应用场景
  • 阿里云Salesforce CRM功能差异列表 - Winter‘24
  • WIN10系统下误删除了用户重启无法登录
  • 国内ip怎么来回切换:操作指南与注意事项
  • day72Html
  • C语言内存函数(超详解)
  • 2024年天津体育学院退役大学生士兵专升本专业考试报名安排
  • linux bypy 定时备份到百度网盘
  • 星光/宝骏/缤果/长安 车机CarPlay手机操作破解教程V2.0版本(无需笔记本、无需笔记本、无需笔记本)
  • Spring Web MVC的入门学习(一)
  • 如何使用Java语言发票查验接口实现发票真伪查验、票据ocr
  • CAPL实现关闭TCP连接的几种方式以及它们的区别
  • Git--08--Git分支合并操作
  • 深度学习训练中的种子设置