当前位置: 首页 > news >正文

保研线性代数机器学习基础复习2

1.什么是群(Group)?

对于一个集合 G 以及集合上的操作 \bigotimes,如果G \bigotimes G-> G,那么称(G,\bigotimes)为一个群,并且满足如下性质:

  • 封闭性:
  • 结合性:
  • 中性元素:
  • 逆元素:

2.什么是阿贝尔群(Abelian group)?

满足交换(commutative)特征的群,称为阿贝尔群。

 3.(R^n,+)和(Z^n,+)是阿贝尔群吗?说明理由。

  • 满足封闭性:
  • 满足结合性
  • 中性元素是:
  • 逆元素是:
  • 满足交换性

4.(R^{(m\times n)},+)是阿贝尔群吗?

5.什么是一般线性群(general linear group)?

讨论(R^{n*n},*)可逆/正则/非奇异方阵以及关于方阵的multiply的操作,是群,但是不是阿贝尔群,因为矩阵乘法不满足交换性。

  • 封闭性和结合性同一般矩阵R^{m*n}
  • 中性元素:单位矩阵I_n
  • 逆元素:对于任意矩阵其逆元素是它的逆矩阵

6.什么是实数向量空间/线性空间(vector space)?

对于向量空间V=(V,+,*)拥有两种操作:

  • +:V操作V得到V (是向量的add操作,每两个向量的逐个元素相加)
  •  *:实数R操作V得到V (是标量乘法scale操作,用向量乘以标量)

同时满足下列条件:

  • (V,+)是一个阿贝尔群
  • 分配性:
  • 结合性:
  • 中性元素:1(对于*,因为+是阿贝尔群)

7.举例一些常见的线性空间?

  • n维向量空间  

  • m行n列矩阵

  • 复数域可以看做是实数域上的线性空间

8.什么是向量子空间(Vector Subspace)?

如果向量空间V=(V,+,*),并且U\subseteq V,U\neq \varnothing,并且U也是满足add和scale的向量空间。

例如齐次线性方程组的解x=[x_1,...,x_n]^T是Rn的向量子空间,但是非齐次线性方程组

的解就不是Rn的子空间。任何一个Rn的子空间都是齐次线性方程组的解。

9.什么是线性组合(Linear Combination)?

首先考虑向量空间V,x_1,...x_k\in Vv\in V,有\lambda _1,...\lambda_k是向量x_1,...x_k的线性组合。

10.什么是线性无关(Linear Independent)?

考虑一个向量空间V,其中,如果存在线性组合满足,其中至少一个λ!=0,那么说明x_1,...x_k线性相关(Linear dependent),但是如果仅仅存在所有\lambda_1,...,\lambda_k=0,那么说明x_1,...x_k线性无关(Linear Independent)。

11.寻找线性无关向量的方法?

  • 首先要确定的是k个向量要么线性无关,要么线性相关,不可能存在第三种情况
  • 如果至少一个向量x_1,...x_k是0向量,那么他们一定线性相关。如果两个向量,并且他们相同,那么也一定线性相关。
  • 如果其中一个向量xi是另一个向量xj的倍数,或者其中一个向量x可以由其他向量线性表示
  • 使用高斯消元法对x_1,..,x_k进行消元,初等变换成列向量之后,如果所有列向量都是pivot column,那么这k个线性无关,如果存在至少一个non-pivot column,那么说明这k个列向量线性相关。

12.如果m>k,那么x1,...,xm线性相关

http://www.lryc.cn/news/329312.html

相关文章:

  • vultr ubuntu 服务器远程桌面安装及连接
  • 前端学习<二>CSS基础——12-CSS3属性详解:动画详解
  • Sqoop 的安装与配置
  • Mysql设置访问权限(docker配置)
  • 【Linux】详解软硬链接
  • 维修贝加莱4PP420.1043-B5触摸屏Power Panel 400工业电脑液晶
  • Java_21 完成一半题目
  • 【WPF应用21】WPF 中的 TextBox 控件详解与示例
  • 小程序页面传参?
  • C++list的模拟实现
  • Leetcode 187. 重复的DNA序列
  • 都江堰泛计算操作系统(多机)应用方向
  • 【第十二届“泰迪杯”数据挖掘挑战赛】【2024泰迪杯】B题基于多模态特征融合的图像文本检索—解题全流程(论文更新)
  • 蓝桥杯22年第十三届省赛-统计子矩阵|一维前缀和加双指针
  • SaaS 电商设计 (十) 记一次 5000kw 商品数据ES迁移 (详细的集群搭建以及线上灰度过程设计)
  • linux安装Tomcat
  • 【机器学习300问】57、机器是如何读得懂文本数据的呢?
  • 了解XSS和CSRF攻击与防御
  • NEO 学习之 MLE(最大似然估计)
  • going和Java对比有什么不同
  • RabbitMQ面经 手打浓缩版
  • JavaScript引用数据类型
  • Mac m1 Flink的HelloWorld
  • 3.1 Python变量的定义和使用
  • OceanBase中左外连接和反连接的经验分享
  • 如何提升公众号搜索量?分享内部运营的5步优化技术!
  • 【2024】根据系统平均负载情况排查隐患
  • 分类任务中的评估指标:Accuracy、Precision、Recall、F1
  • android 音视频基础知识--个人笔记
  • 信息工程大学第五届超越杯程序设计竞赛(同步赛)题解