当前位置: 首页 > news >正文

内存可见性

内存可见性

  • 一:内存可见性
    • 1.2:
  • 二:解决内存可见性问题
    • 2.1 volatile关键字
    • 2.2:synchronized关键字解决内存可见性问题

一:内存可见性

public class Demo1 {public static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(()->{while(count==0){}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);1System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}

上述代码预期效果:
t1线程首先进入循环,当用户输入一个非0整数的时候,就会使t1线程退出循环.结束线程.
但t1实际上并没有真正出现退出的情况,这也是"bug",而产生上述现象的原因,就是**“内存可见性”**

  while(count==0){}

从指令角度分析这段代码:
(1)load :从内存读取数据到CPU 寄存器中,
(2)cmp:比较,条件成立,继续循环,条件不成立,退出循环.
然而,一个load指令消耗的时间,会比一个cmp指令消耗的时间多得多,执行一次load的时间,等于上万次cmp执行消耗的时间.
同时,JVM发现每次load执行的结果,是一样的(t2线程修改之前),因此,**JVM就把上述load操作优化掉了,只是第一次真正进行load,后续再执行到load,而是直接读取已经load过的寄存器中的值了(读取寄存器的速度远远大于 读取内存的速度).**当t2线程修改count的值,但由于t1线程并没有从内存中重新读取,所以获取不到更新后的值.

1.2:

public class Demo1 {public static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(()->{while(count==0){System.out.println("hello ");}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}

当我们在

 while(count==0){System.out.println("hello ");}

while循环中打印,就会发现代码又和我们预期的效果一样了,这又是为什么???
因为循环体内存在IO操作,而IO操作是从硬盘中获取数据,因此IO操作消耗的时间比load操作消耗的时间更多,并且IO操作是不能被优化掉的.
总结:上述问题本质上是编译器优化引起的(优化是由javac和java配合完成的工作),优化掉load操作之后,使t2线程的修改,没有被t1线程感知到,这就造成了"内存可见性"问题

二:解决内存可见性问题

2.1 volatile关键字

编译器什么时候优化,什么时候不优化,这是一个"玄学问题".
通过volatile关键字,解决优化问题,让编译器不再优化.
当给变量修饰上volatile关键字之后,编译器就知道了,这个变量是"反复无常"的,编译器就不会再进行优化了
volatile 是专门针对内存可见性的场景来解决问题的,告诉编译器不要进行优化操作.

public class Demo1 {public  volatile static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(()->{while(count==0){}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}

2.2:synchronized关键字解决内存可见性问题

synchronized关键字,和volatile关键字处理逻辑上是不同的.
引入synchronized关键字,是因为加锁操作本身太重量了,相比load 来说,开销更大,编译器自然就不会对load 优化了(和sleep ,IO操作原理类似).

public class Demo1 {public   static int count = 0;public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1=new Thread(()->{while(count==0){synchronized (locker){{}}}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}
http://www.lryc.cn/news/329056.html

相关文章:

  • Android room 在dao中不能使用挂起suspend 否则会报错
  • 【stable diffusion扩散模型】一篇文章讲透
  • 数据链路层之信道:数字通信的桥梁与守护者
  • SQL109 纠错4(组合查询,order by..)
  • Spring Boot + Vue 实现文件导入导出功能
  • vue watch 深度监听
  • Qt源码调试步骤记录
  • 大数据面试英文自我介绍参考(万字长文)
  • 外包干了5天,技术退步明显.......
  • Docket常见的软件部署1
  • Qt源程序编译及错误问题解决
  • 作业练习(python)
  • Wireshark使用相关
  • 相机标定学习记录
  • CSS 滚动条样式修改
  • 谈谈配置中心?
  • 人工智能(pytorch)搭建模型25-基于pytorch搭建FPN特征金字塔网络的应用场景,模型结构介绍
  • JRT业务开发起步
  • 深度解析:国内主流音视频产品的核心功能与市场表现
  • 红黑树介绍及插入操作的实现
  • [linux初阶][vim-gcc-gdb] TwoCharter: gcc编译器
  • 单例设计模式(2)
  • boost::asio 启用 io_uring(Linux 5.10)队列支持
  • Android 自定义坐标曲线图(二)
  • 每日OJ题_子序列dp⑧_力扣446. 等差数列划分 II - 子序列
  • GOPROXY 代理设置
  • Redis面经
  • 【c++】类和对象(六)深入了解隐式类型转换
  • 什么是nginx正向代理和反向代理?
  • 【Go】面向萌新的Gin框架知识梳理学习笔记