当前位置: 首页 > news >正文

递归方法的理解

递归方法调用 :方法自己调用自己的现象就称为递归。
递归的分类 : 直接递归、间接递归。
 直接递归:方法自身调用自己
public void methodA (){
methodA ();
}

间接递归:可以理解为A()方法调用B()方法,B()方法调用C()方法,C()方法调用A()方法。 

public static void A (){
B ();
}
public static void B (){
C ();
}
public static void C (){
A ();
}
说明
递归方法包含了一种 隐式的循环
递归方法会 重复执行 某段代码,但这种重复执行无须循环控制。
递归一定要向 已知方向 递归,否则这种递归就变成了无穷递归,停不下来,类似于 死循环 。最终
发生 栈内存溢出

举例1:计算1 ~ n的和

public class RecursionDemo {
public static void main ( String [] args ) {
RecursionDemo demo = new RecursionDemo ();
// 计算 1~num 的和,使用递归完成
int num = 5 ;
// 调用求和的方法
int sum = demo . getSum ( num );
// 输出结果
System . out . println ( sum );
}
/*
通过递归算法实现 .
参数列表 :int
返回值类型 : int
*/
public int getSum ( int num ) {
/*
num 1 , 方法返回 1,
相当于是方法的出口 ,num 总有是 1 的情况
*/
if ( num == 1 ){
return 1 ;
}
/*
num 不为 1 , 方法返回 num +(num-1) 的累和
递归调用 getSum 方法
*/
return num + getSum ( num - 1 );
}
}

代码执行图解:

代码解释

/*
* 当程序执行时,它会按照以下流程进行:1. `main` 方法被调用。
2. 一个 `RecursionDemo` 类的对象 `demo` 被创建。
3. `n` 被赋值为 5。
4. 调用 `demo.getSum(n)` 方法,其中 `n` 的值为 5。
5. 进入 `getSum` 方法。
6. `n` 的值不为 1,因此程序执行 `return n + getSum(n - 1);`,其中 `n - 1` 的值为 4。
7. 程序递归调用 `getSum` 方法,将参数值 `4` 传递给它。
8. 再次进入 `getSum` 方法。
9. `n` 的值不为 1,因此程序执行 `return n + getSum(n - 1);`,其中 `n - 1` 的值为 3。
10. 程序递归调用 `getSum` 方法,将参数值 `3` 传递给它。
11. 再次进入 `getSum` 方法。
12. `n` 的值不为 1,因此程序执行 `return n + getSum(n - 1);`,其中 `n - 1` 的值为 2。
13. 程序递归调用 `getSum` 方法,将参数值 `2` 传递给它。
14. 再次进入 `getSum` 方法。
15. `n` 的值不为 1,因此程序执行 `return n + getSum(n - 1);`,其中 `n - 1` 的值为 1。
16. 程序递归调用 `getSum` 方法,将参数值 `1` 传递给它。
17. 再次进入 `getSum` 方法。
18. `n` 的值为 1,因此程序直接返回 1。
19. 回到上一层递归调用,将返回的值 1 加上当前层的 `n` 的值(为 2),得到结果 3,返回给上一层。
20. 继续返回上一层递归调用,将返回的值 3 加上当前层的 `n` 的值(为 3),得到结果 6,返回给上一层。
21. 继续返回上一层递归调用,将返回的值 6 加上当前层的 `n` 的值(为 4),得到结果 10,返回给上一层。
22. 继续返回上一层递归调用,将返回的值 10 加上当前层的 `n` 的值(为 5),得到结果 15,返回给上一层。
23. 回到 `main` 方法,将返回的结果 15 赋值给 `sum` 变量。
24. `System.out.println(sum);` 将结果打印到控制台上。所以,程序的输出结果为 `15`。
*
*
*
* */
}

举例2:递归方法计算n!

public int multiply ( int num ){
if ( num == 1 ){
return 1 ;
} else {
return num * multiply ( num - 1 );
}
}

 

public int f ( int num ){
if ( num == 0 ){
return 1 ;
} else if ( num == 1 ){
return 4 ;
} else {
return 2 * f ( num - 1 ) + f ( num - 2 );
}
}

举例3:已知有一个数列:f(0) = 1f(1) = 4f(n+2)=2*f(n+1) + f(n),其中n是大于0的整数,求f(10)的值。

public int func ( int num ){
if ( num == 20 ){
return 1 ;
} else if ( num == 21 ){
return 4 ;
} else {
return func ( num + 2 ) - 2 * func ( num + 1 );
}
}

举例4:计算斐波那契数列(Fibonacci)的第n个值

斐波那契数列满足如下规律,
1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 ,....
即从第三个数开始,一个数等于前两个数之和。假设 f(n) 代表斐波那契数列的第 n 个值,那么 f(n) 满足:
f(n) = f(n-2) + f(n-1);
// 使用递归的写法
int f ( int n ) { // 计算斐波那契数列第 n 个值是多少
if ( n < 1 ) { // 负数是返回特殊值 1 ,表示不计算负数情况
return 1 ;
}
if ( n == 1 || n == 2 ) {
return 1 ;
}
return f ( n - 2 ) + f ( n - 1 );
}
// 不用递归
int fValue ( int n ) { // 计算斐波那契数列第 n 个值是多少
if ( n < 1 ) { // 负数是返回特殊值 1 ,表示不计算负数情况
return 1 ;
}
if ( n == 1 || n == 2 ) {
return 1 ;
}
// 从第三个数开始, 等于 前两个整数相加
int beforeBefore = 1 ; // 相当于 n=1 时的值
int before = 1 ; // 相当于 n=2 时的值
int current = beforeBefore + before ; // 相当于 n=3 的值
// 再完后
for ( int i = 4 ; i <= n ; i ++ ) {
beforeBefore = before ;
before = current ;
current = beforeBefore + before ;
/* 假设 i=4
beforeBefore = before; // 相当于 n=2 时的值
before = current; // 相当于 n=3 的值
current = beforeBefore + before; // 相当于 n = 4 的值
假设 i=5
beforeBefore = before; // 相当于 n=3 的值
before = current; // 相当于 n = 4 的值
current = beforeBefore + before; // 相当于 n = 5 的值
....
*/
}
return current ;
}

举例5:面试题

宋老师,我今天去百度面试,遇到一个一个双重递归调用的问题,我琢磨了一下,完全不知道为什
么。打断点了,也还是没看懂为什么程序会那样走。您有空可以看一下,求指教。

private int count = 0 ;
public int recursion ( int k ) {
count ++ ;
System . out . println ( "count1:" + count + " k:" + k );
if ( k <= 0 ) {
return 0 ;
}
return recursion ( k - 1 ) + recursion ( k - 2 ); //287
//return recursion(k - 1);//11
//return recursion(k - 1) + recursion(k - 1);//2047
}

剖析:

最后说两句:
1. 递归调用会占用大量的系统堆栈,内存耗用多,在递归调用层次多时速度要比循环 慢的
,所以在使用递归时要慎重。
2. 在要求高性能的情况下尽量避免使用递归,递归调用既花时间又 耗内存 。考虑使用循环迭 代。

http://www.lryc.cn/news/328074.html

相关文章:

  • css之flex布局文本不换行不显示省略号的解决方法
  • 华清远见STM32U5开发板助力2024嵌入式大赛ST赛道智能可穿戴设备及IOT选题项目开发
  • 若依框架实现不同端用户登录(后台管理用户和前台会员登录——sping security多用户)
  • 【解決|三方工具】Obi Rope 编辑器运行即崩溃问题
  • 岭师大数据技术原理与应用-序章-软工版
  • Leetcode 680. 验证回文串 II
  • 网络安全接入认证-802.1X接入说明
  • iPhone的iOS系统:定义移动智能体验,引领科技潮流之巅
  • 计算机网络:传输控制协议(Transmission Control Protocol-TCP协议
  • GEE实践应用|热岛效应(一)地表温度计算
  • Java查找算法知识点(含面试大厂题和源码)
  • 67、yolov8目标检测和旋转目标检测算法部署Atlas 200I DK A2开发板上
  • A Little Is Enough: Circumventing Defenses For Distributed Learning
  • 文心一言 VS 讯飞星火 VS chatgpt (225)-- 算法导论16.3 7题
  • 【计算机】——51单片机——持续更新
  • QT资源添加调用
  • LeetCode-49. 字母异位词分组【数组 哈希表 字符串 排序】
  • 绘制特征曲线-ROC(Machine Learning 研习十七)
  • .Net 知识杂记
  • 海豚【货运系统源码】货运小程序【用户端+司机端app】源码物流系统搬家系统源码师傅接单
  • 01---java面试八股文——mybatis-------10题
  • 增强现实(AR)的开发工具
  • 用Unity制作正六边形拼成的地面
  • Spark部署详细教程
  • 慧天[HTWATER]:创新城市水务科技,引领行业变革
  • vscode调试Unity
  • JavaScript是如何实现页面渲染的
  • 【YOLOv8 代码解读】数据增强代码梳理
  • 安卓调试桥ADB
  • 深入理解数据结构第一弹——二叉树(1)——堆