当前位置: 首页 > news >正文

Amuse:.NET application for stable diffusion

目录

Welcome to Amuse!

Features

Why Choose Amuse?

Key Highlights

Paint To Image

Text To Image

Image To Image

Image Inpaint

Model Manager

Hardware Requirements

Compute Requirements

Memory Requirements

System Requirements

Realtime Requirements


Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise


Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.

  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.

  • Image To Image: Transform images seamlessly using advanced machine learning models.

  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.

  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn’t just a tool; it’s a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.

  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.

  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it’s about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.


Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it’s digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Paint To Image

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Text To Image

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image To Image

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It’s used for tasks like photo restoration and object removal, creating seamless and convincing results.

Image Inpaint

Model Manager

Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

DeviceRequirement
CPUAny modern Intel/AMD
AMD GPURadeon HD 7000 series and above
IntelHD Integrated Graphics and above (4th-gen core)
NVIDIAGTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

ModelDevicePrecisionRAM/VRAM
Stable DiffusionGPU16~4GB
Stable DiffusionCPU/GPU32~8GB
SDXLCPU/GPU32~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

BuildDeviceRequirements
CPUCPUNone
DirectMLCPU, AMD GPU, Nvidia GPUAt least Windows10
CUDANvidia GPUCUDA 11 and cuDNN toolkit
TensorRTNvidia GPUCUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

DeviceModelFPS
GTX 2080LCM_Dreamshaper_v7_Olive_Onnx1-2
RTX 3090LCM_Dreamshaper_v7_Olive_Onnx3-4

http://www.lryc.cn/news/326044.html

相关文章:

  • Java冒泡排序详细讲解
  • python数据解析xpath
  • 工业镜头常用参数之实效F(Fno.)和像圈
  • what is apache?
  • 【二叉树】Leetcode 94. 二叉树的中序遍历【简单】
  • Linux进程控制(等待)
  • 结构体-C语言
  • Unity DOTS中的baking(四)blob assets
  • 第三十天-Flask模板 Jinja2
  • 在项目中数据库如何优化?【MySQL主从复制(创建一个从节点复制备份数据)】【数据库读写分离ShardingJDBC(主库写,从库读)】
  • Fragment 与 ViewPager的联合应用(2)
  • OriginBot智能机器人开源套件
  • Java Web-Maven
  • .Net 异步委托
  • web前端面试题---->HTML、CSS
  • 移动端Web笔记day03
  • c++的学习之路:3、入门(2)
  • 面试经典150题【91-100】
  • 在 nginx 中使用 JavaScript
  • 【pytorch】安装合集
  • 【教程】PLSQL查看表属性乱码解决方法
  • 新书速览|Django 5企业级Web应用开发实战:视频教学版
  • excel创建和部分使用
  • pycharm使用远程服务器的jupyter环境
  • ES6 基础
  • 【双指针】Leetcode 有效三角形的个数
  • python项目练习——4.手写数字识别
  • 【目标检测】NMS算法的理论讲解
  • 3-iperf3 使用什么工具可以检测网络带宽、延迟和数据包丢失率等网络性能参数呢?
  • 阳光倒灌高准直汽车抬头显示器HUD太阳光模拟器