当前位置: 首页 > news >正文

【刷题】滑动窗口入门

在这里插入图片描述
送给大家一句话:

那脑袋里的智慧,就像打火石里的火花一样,不去打它是不肯出来的。——莎士比亚

滑动窗口入门

  • 认识滑动窗口
  • Leetcode 209. 长度最小的子数组
    • 题目描述
    • 算法思路
  • Leetcode 3. 无重复字符的最长子串
    • 题目描述
    • 算法思路
  • Leetcode 1004. 最大连续1的个数 III
    • 题目描述
    • 算法思路
  • 总结
  • 送给大家一句话:
  • Thanks♪(・ω・)ノ谢谢阅读!!!
  • 下一篇文章见

今天我学习了滑动窗口的算法思路,接下来请与我一起看看吧!!!

认识滑动窗口

滑动窗口问题可以说是一种特殊的双指针问题,通常用于解决以下类型的问题:

  1. 连续子数组或子字符串问题:例如,找出一个数组中连续元素和最大或最小的子数组,或者在字符串中找到一个包含特定字符的最短子字符串。
  2. 固定窗口大小问题:当窗口大小固定时,我们可以通过移动窗口来遍历整个数组或字符串,并记录所需的统计信息。
  3. 可变窗口大小问题:在某些情况下,窗口的大小可能会根据特定条件而变化。这需要我们在遍历过程中动态地调整窗口的大小。

滑动窗口算法的基本思想是使用双指针(有时也可能使用更多指针)来表示窗口的边界。在每一步中,我们可以根据特定条件来移动窗口的边界,并更新所需的统计信息。

看这些定义是真无法想象出来哦怎么个滑动窗口的,下面我们一起来做题吧:

Leetcode 209. 长度最小的子数组

题目描述

在这里插入图片描述
看这个题目还是很好理解的,只需要我们找到和大于target的连续子数组,我们来看第一个样例target = 7, nums = [2,3,1,2,4,3] 显然4,3是最小的子数组。接下来分析一下算法思路:

算法思路

根据题目要求,首先可以想到的是暴力枚举算法(遇事不决,暴力解决),遍历穷举出所有的连续子数组,寻找满足要求的子数组,最终就找到了最小的连续子数组:

class Solution {
public:int minSubArrayLen(int s, vector<int>& nums) {//暴力解法int n = nums.size();if (n == 0) {return 0;}//默认为最大值int ans = INT_MAX;//开始遍历for (int i = 0; i < n; i++) {//重置sum值int sum = 0;//判断子数组是否满足for (int j = i; j < n; j++) {sum += nums[j];if (sum >= s) {//满足就更新结果ans = min(ans, j - i + 1);break;}}}return ans == INT_MAX ? 0 : ans;}
};

这样暴力的算法的时间复杂度是O(n^2),我们看看可不可以进行优化:
来看图解(来着力扣官方)在这里插入图片描述

这样就模拟了滑动窗口:
做法:将右端元素划⼊窗⼝中,统计出此时窗⼝内元素的和:

  • 如果窗⼝内元素之和⼤于等于 target :更新结果,并且将左端元素划出去的同时继续判
    断是否满⾜条件并更新结果(因为左端元素可能很⼩,划出去之后依旧满⾜条件)
  • 如果窗⼝内元素之和不满⾜条件: right++ ,另下⼀个元素进⼊窗⼝。
class Solution {
public:int minSubArrayLen(int target, vector<int>& nums) {int left = 0,right = 0;//设置为最大值 保证没有满足的子数组时可以判断int len = INT_MAX;int sum = 0;sum += nums[left];while(left < nums.size() && right < nums.size()){//if(sum < target ){right++;if(right < nums.size())sum += nums[right];}while (sum >= target){len = min (right - left + 1 , len) ;sum -= nums[left];left++;}}return len == INT_MAX ? 0:len;}
};

这样大大提高了算法的效率!!!
为何滑动窗⼝可以解决问题,并且时间复杂度更低?

  1. 这个窗⼝寻找的是:以当前窗⼝最左侧元素(记为 left1 )为基准,符合条件的情况。也就是在这道题中,从 left1 开始,满⾜区间和 sum >= target 时的最右侧(记为right1 )能到哪⾥。
  2. 我们既然已经找到从 left1 开始的最优的区间,那么就可以⼤胆舍去 left1 。但是如果继续像⽅法⼀⼀样,重新开始统计第⼆个元素( left2 )往后的和,势必会有⼤量重复的计算(因为我们在求第⼀段区间的时候,已经算出很多元素的和了,这些和是可以在计算下次区间和的时候⽤上的)。
  3. 此时, rigth1 的作⽤就体现出来了,我们只需将 left1 这个值从sum 中剔除。从right1 这个元素开始,往后找满⾜ left2 元素的区间(此时right1 也有可能是满⾜的,因为 left1 可能很⼩。 sum 剔除掉 left1 之后,依旧满⾜⼤于等于target )。这样我们就能省掉⼤量重复的计算。

这样我们不仅能解决问题,⽽且效率也会⼤⼤提升

继续我们来看下一题

Leetcode 3. 无重复字符的最长子串

题目描述

在这里插入图片描述
描述也是十分简单奥,我们接着来看如何解决

算法思路

首先想到的还是暴力枚举啊,我们可以借助哈希表来确定是否重复。
枚举过程中就会发现左右指针移动方向相同,所以可以进行滑动窗口

  1. 入窗口(右指针移动)
  2. 判断(判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果
class Solution {
public:int lengthOfLongestSubstring(string s) {int len = 0;int n = s.size();//使用哈希进行判断是否重复int hash[128] = {0};int ret = 0;for(int left = 0,right = 0; right < n; right++){//进入窗口hash[s[right]]++;//判断while(hash[s[right]] > 1){//出窗口hash[s[left]]--;left++;len--;}//更新结果len++;ret = max(len,ret);}return ret;}
};

这样就完美解决。
其实滑动窗口都是可以套用上面的模版的,不信?来看下一题

Leetcode 1004. 最大连续1的个数 III

题目描述

在这里插入图片描述
题目描述依然简单奥,只是判断条件发生了改变,我们需要来定义一个数字来比较是否满足少于k

算法思路

依旧是:

  1. 入窗口(右指针移动)
  2. 判断(判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果
class Solution {
public:int longestOnes(vector<int>& nums, int k) {int tmp = 0,left = 0,right = 0,n = nums.size();int ret = 0;while(right < n){if(nums[right] == 0) {tmp++;    }while(tmp > k){if(nums[left] == 0) tmp--;left++;}ret = max(ret,right - left + 1);right++;}return ret;}
};

这样就成功完成解题!!!

总结

滑动窗口问题是可以通过模版来解决:

  1. 入窗口(右指针移动)
  2. 判断(按题分析判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果

这样基本滑动窗口都可以解决,但重要的是理解滑动窗口的思路是如何得到的,是如何从暴力算法优化出来的。

送给大家一句话:

那脑袋里的智慧,就像打火石里的火花一样,不去打它是不肯出来的。——莎士比亚

Thanks♪(・ω・)ノ谢谢阅读!!!

下一篇文章见

http://www.lryc.cn/news/321660.html

相关文章:

  • 【Python 48小时速成 3】输入与输出
  • API开发小红书接口获得小红书笔记详情API接口请求接入演示
  • Python条件语句深度解析:从基础到应用的全面指南
  • 【leetcode热题】 地下城游戏
  • Centos7安装ffmpeg
  • 安卓面试题多线程 81-85
  • Java基础知识总结(8)
  • C++基础入门(命名空间,函数,引用)
  • 【译】矢量数据库 101 - 什么是矢量数据库?
  • Python Web开发记录 Day12:Django part6 用户登录
  • SpringTask实现的任务调度与XXL-job实现的分布式任务调度【XXL-Job工作原理】
  • 【java】图书管理系统
  • C#实现约瑟夫环算法
  • 游戏服务端配置“热更”及“秒启动”终极方案(golang/ygluu/卢益贵)
  • 鸿蒙开发的入门
  • 为什么要减少Http的请求以及如何减少Http请求
  • Linux性能测试工具整理
  • 前端路由history路由和hash路由的区别?原理?
  • AcWing 727. 菱形——像拼图一样做题
  • 深入理解生成型大型语言模型:自监督预训练、细调与对齐过程及其应用
  • 个人简历主页搭建系列-03:Hexo+Github Pages 介绍,框架配置
  • 【堆、位运算、数学】算法例题
  • IDEA 多个git仓库项目放一个窗口
  • 全球变暖(蓝桥杯,acwing每日一题)
  • 多数据源 - dynamic-datasource | 集成 Quartz 及 ShardingJDBC
  • 四连杆机构运动学仿真 | 【Matlab源码+理论公式文本】| 曲柄滑块 | 曲柄摇杆 | 机械连杆
  • Lightroom Classic 2024 for mac 中文激活:强大的图像后期处理软件
  • 程序员下班以后做什么副业合适?
  • HSE化工应急安全生产管理平台:衢州某巨大型化工企业的成功应用
  • 塑料工厂5G智能制造数字孪生可视化平台,推进塑料行业数字化转型