当前位置: 首页 > news >正文

Spark杂谈

文章目录

    • 什么是Spark
    • 对比Hadoop
    • Spark应用场景
    • Spark数据处理流程
    • 什么是RDD
    • Spark架构相关进程
    • 入门案例:统计单词数量
    • Spark开启historyServer

什么是Spark

  • Spark是一个用于大规模数据处理的统一计算引擎
  • Spark一个重要的特性就是基于内存计算,从而它的速度可以达到MapReduce的几十倍甚至百倍

对比Hadoop

  • Spark是一个综合性质的计算引擎,Hadoop既包含Mapreduce(计算)还包含HDFS(存储)和YARN(资源管理),两个框架定位不同,从综合能力来说Hadoop更胜一筹
  • 计算模型:Spark任务可以包含多个计算操作,轻松实现复杂迭代计算,Hadoop中的mapreduce任务只包含Map和Reduce阶段,不够灵活
  • 处理速度:Spark任务的数据是存放在内存里面的,而Hadoop中的MapReduce任务是基于磁盘的

在实际工作中Hadoop会作为一个提供分布式存储和分布式资源管理的一个角色存在,Spark会依赖于Hadoop去做计算。

u=2638182824,2878592987&fm=253&fmt=auto&app=138&f=JPEG

Spark应用场景

  • 低延时的海量数据计算需求
  • 低延时的SQL交互查询需求
  • 准实时计算需求

Spark数据处理流程

image-20240315122547773

什么是RDD

  • 通常通过Hadoop上的文件,即HDFS文件进行创建,也可以通过程序中的集合来创建
  • 是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集
    • 弹性:RDD数据在默认的情况下存放内存中,但是在内存资源不足时,Spark也会自动将RDD数据写入磁盘
    • RDD在抽象上来说是一种元素数据的集合,它是被分区的,每个分区分布在集群中的不同节点上,从而RDD中的数据可以被并行操作
    • 容错性:最重要的特性就是提供了容错性,可以自动从节点失败中恢复过来。比如某个节点的数据由于故障导致分区的数据丢了,RDD会自动通过数据来源重新计算数据

Spark架构相关进程

  • Driver:我们编写的Spark程序由Driver进程负责执行
  • Master:集群的主节点中启动的进程
  • Worker:集群的从节点中启动的进程
  • Executor:由Worker负责启动的进程,执行数据处理和数据计算
  • Task:由Executor负责启动的线程,是真正干活的

image-20240314143728783

入门案例:统计单词数量

# scala 代码
object WordCountScala {def main(args: Array[String]): Unit = {val conf = new SparkConf();conf.setAppName("wordCount").setMaster("local")val context = new SparkContext(conf);val linesRDD = context.textFile("D:\\hadoop\\logs\\hello.txt");var wordsRDD = linesRDD.flatMap(line => line.split(" "))val pairRDD = wordsRDD.map(word => (word, 1))val wordCountRDD = pairRDD.reduceByKey(_ + _)wordCountRDD.foreach(wordCount => println(wordCount._1 + "---" + wordCount._2))context.stop()}
}
public class WordCountJava {public static void main(String[] args) {SparkConf sparkConf = new SparkConf();sparkConf.setAppName("worldCount").setMaster("local");JavaSparkContext javaSparkContext = new JavaSparkContext();JavaRDD<String> stringJavaRDD = javaSparkContext.textFile("D:\\hadoop\\logs\\hello.txt");// 数据切割,把一行数据拆分为一个个的单词// 第一个是输入数据类型,第二个是输出数据类型JavaRDD<String> wordRDD = stringJavaRDD.flatMap(new FlatMapFunction<String, String>() {@Overridepublic Iterator<String> call(String line) throws Exception {return Arrays.asList(line.split(" ")).iterator();}});// 迭代word,装换成(word,1)这种形式// 第一个是输入参数,第二个是输出第一个参数类型,第三个是输出第二个参数类型JavaPairRDD<String, Integer> pairRDD = wordRDD.mapToPair(new PairFunction<String, String, Integer>() {@Overridepublic Tuple2<String, Integer> call(String word) throws Exception {return new Tuple2<>(word, 1);}});// 根据key进行分组聚合JavaPairRDD<String, Integer> wordCountRDD = pairRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {@Overridepublic Integer call(Integer v1, Integer v2) throws Exception {return v1 + v2;}});// 输出控制台wordCountRDD.foreach(new VoidFunction<Tuple2<String, Integer>>() {@Overridepublic void call(Tuple2<String, Integer> tuple2) throws Exception {System.out.println(tuple2._1 + "=:=" + tuple2._2);}});javaSparkContext.stop();}}

Spark开启historyServer

[root@hadoop04 conf]# vim spark-env.sh 
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080 -Dspark.history.fs.logDirectory=hdfs://hadoop01:9000/tmp/logs/root/logs"[root@hadoop04 conf]# vim spark-defaults.conf 
spark.eventLof.enable=true
spark.eventLog.compress=true
spark.eventLog.dir=hdfs://hadoop01:9000/tmp/logs/root/logs
spark.history.fs.logDirectory=hdfs://hadoop01:9000/tmp/logs/root/logs# 启动
[root@hadoop04 conf]# sbin/start-history-server.sh # 访问
http://hadoop04:18080/

image-20240315120605852

http://www.lryc.cn/news/320920.html

相关文章:

  • 【PyTorch】进阶学习:一文详细介绍 torch.save() 的应用场景、实战代码示例
  • 私域流量运营的关键要素和基本步骤
  • k8s部署hadoop
  • deepspeed分布式训练在pytorch 扩展(PyTorch extensions)卡住
  • Rust 的 HashMap
  • exporter方式监控达梦数据库
  • 供应链安全之被忽略的软件质量管理平台安全
  • python入门(二)
  • Mysql,MongoDB,Redis的横纵向对比
  • css3 实现html样式蛇形布局
  • 基于消失点的相机自标定
  • Python:filter过滤器
  • Python函数学习
  • IDEA中的Project工程、Module模块的概念及创建导入
  • 如何快速下载并剪辑B站视频
  • 智慧矿山新趋势:大数据解决方案一览
  • Ubuntu使用Docker部署Nginx容器并结合内网穿透实现公网访问本地服务
  • 面试笔记——Redis(使用场景、面临问题、缓存穿透)
  • 电机学(笔记一)
  • 数值分析复习:Newton插值
  • 金融知识分享系列之:出场信号RSI指标
  • 基于Spring Boot的宿舍管理系统
  • 全量知识系统“全基因序列”程序构想及SmartChat的回复
  • 315晚会曝光主板机产业链,如何应对工作室技术更迭
  • Copilot with GPT-4与文心一言4.0:AI技术的未来
  • 注册-前端部分
  • SpringBoot ApplicationListener实现发布订阅模式
  • 嵌入式学习40-数据结构
  • k8s集群部署elk
  • 【Python】清理conda缓存的常用命令