当前位置: 首页 > news >正文

基于粒子群算法的分布式电源配电网重构优化matlab仿真

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

4.1基本PSO算法原理

4.2配电网重构的目标函数

5.完整工程文件


1.课题概述

基于粒子群算法的分布式电源配电网重构优化。通过Matlab仿真,对比优化前后

1.节点的电压值
2.线路的损耗,这里计算网损
3.负荷均衡度
4.电压偏离
5.线路的传输功率
6.重构后和重构前开关变化状态

2.系统仿真结果

1.节点的电压值

  15.0000 + 0.0000i
  14.9761 + 0.0002i
  14.8564 + 0.0014i
  14.8396 + 0.0000i
  14.8257 - 0.0006i
  14.7965 - 0.0093i
  14.7898 - 0.0164i
  14.3003 - 0.3734i
  14.2857 - 0.3291i
  14.2937 - 0.3099i
  14.2968 - 0.3073i
  14.3781 - 0.4659i
  14.3691 - 0.4669i
  14.2306 - 0.2775i
  14.2385 - 0.2765i
  14.2389 - 0.2553i
  14.2331 - 0.2024i
  14.2325 - 0.1839i
  14.9747 - 0.0003i
  14.4088 - 0.4626i
  14.3907 - 0.4526i
  14.4048 - 0.4598i
  14.7643 - 0.0073i
  14.5812 - 0.0374i
  14.4344 - 0.0587i
  14.7945 - 0.0095i
  14.7931 - 0.0096i
  14.3626 - 0.0771i
  14.3669 - 0.0753i
  14.3191 - 0.0713i
  14.2603 - 0.1246i
  14.2465 - 0.1425i
  14.2405 - 0.1634i

2.线路的损耗,这里计算网损
PLoss0 =

  139.9155
PLoss1 =

   56.7952

损耗降低百分比:

ans =

   59.4075

3.负荷均衡度
ans =

    0.0196

4.电压偏离
ans =

   27.8995


5.线路的传输功率
Powers =

   22.5049
   22.5231
   22.5006
   22.5004
   22.5006
   22.5000
   22.9657
   22.5014
   22.5003
   22.5001
   22.5765
   22.5000
   22.5373
   22.5001
   22.5004
   22.5008
   22.5003
   22.5000
   22.6966
   22.5004
   22.5001
   22.5129
   22.5236
   22.5152
   22.5000
   22.5000
   22.6011
   22.5000
   22.5036
   22.5033
   22.5007
   22.5004
   22.5036
   22.5012
   22.5002
   22.5005
   22.5048

6.重构后和重构前开关变化状态
Switch0 =

     7     1     3     2    16


Switch1 =

     2     4     4     4    15


swicths =

     2     4     4     4    15
     3     5     5     5    16

3.核心程序与模型

版本:MATLAB2017B

.............................................................................figure;
plot(objs,'linewidth',2);
xlabel('迭代次数');
ylabel('适应度值');
grid on%1、节点的电压值
Node_volgates{indxmin2}
%2、线路的损耗,这里计算网损
%重构前
PLoss0 = Loss0(indxmin_,:) 
%重构后
PLoss1 = min(Loss1)
disp('损耗降低百分比:');
100*abs(PLoss0-PLoss1)/PLoss0%负荷均衡度,这里均衡采用了方差来计算,值越小,均衡度越高
fobj2(indxmin)%电压偏离
fobj1(indxmin)%3、线路的传输功率
case33;
Node_voltage = Node_volgates{indxmin2};
for iii = 1:length(Matrix1)Powers(iii,1) =  abs((abs(Node_voltage(Matrix1(iii,2))-Node_voltage(Matrix1(iii,3))))^2/(Matrix1(iii,4))+Rz); 
end
Powers
%4、重构后和重构前开关变化状态
%重构前
Switch0 = Best_pso_(indxmin_,:) 
%重构后
Switch1 = Best_pso(indxmin2,:) %5、如果出现故障,及一条线路断开之后开关变化状态
%这里进行断开支路测试
for i = 1:Swicthswicths(:,i) = [Matrix1(Switch1(i),2:3)]';
end
swicths
02_054m

4.系统原理简介

         分布式电源配电网重构(Distribution Network Reconfiguration,DNR)是一个重要的电力系统优化问题,旨在通过改变配电网中的开关状态,以最小化网络损耗、提高供电可靠性和优化分布式电源的接入效益。粒子群优化算法(Particle Swarm Optimization, PSO)作为一种启发式全局优化方法,被广泛应用于解决此类复杂优化问题。

4.1基本PSO算法原理

       在PSO中,每个粒子表示配电网重构的一种可能解(即一种开关状态组合),其位置矢量X_i代表第i个粒子所对应的解空间中的解。每个粒子具有速度矢量V_i,用于更新其位置:

  • w是惯性权重,用于平衡全局搜索和局部搜索。
  • c_1 和 c_2 是加速常数,控制个体最优解(P_i)和全局最优解(G_i)对当前粒子的影响。
  • r_1 和 r_2 是随机变量,在[0, 1]之间,用于引入随机性。
  • P_i 是粒子i的历史最优位置(对应最低目标函数值的开关状态组合)。
  • G 是整个种群中的全局最优位置(所有粒子经历过的最优开关状态组合)。

4.2配电网重构的目标函数

       在基于粒子群算法的分布式电源配电网重构优化问题中,目标函数通常结合了多个评价指标以达到综合最优。这里主要考虑以下三个关键因素:

       节点电压偏离(Voltage Deviation) 节点电压偏离反映了配电网络重构后各节点实际电压与额定电压之间的差异。其数学表示通常采用均方误差的形式:

其中,Ui​ 是第 i 个节点的实际电压,Uref​ 是参考电压或额定电压,N 是总节点数。

       线路负荷均衡度(Load Balance Index) 线路负荷均衡度衡量的是整个配电网内各线路负载分布的均匀程度。一种可能的度量方法是计算所有线路负荷与其平均值的标准差:

其中,Pj​ 表示第 j 条线路的功率负荷,ˉPˉ 是所有线路负荷的平均值,M 是线路总数。

        线路损耗(Line Losses) 线路损耗包括电阻损耗和电抗损耗,在考虑分布式电源接入的情况下,需要根据重构后的网络拓扑结构和运行状态计算总的线路损耗:

这里,Rj​ 和Xj​ 分别为第 j 条线路的电阻和感抗,Ij​ 是通过该线路的电流。

将上述三个指标整合成一个复合目标函数,可以采用加权和的方式表达:

       粒子群算法则用于求解此复合目标函数的最小化问题,通过不断迭代更新每个粒子(即潜在的网络重构方案)的位置和速度,最终找到一组最优的开关状态组合。

5.完整工程文件

v

v

http://www.lryc.cn/news/320107.html

相关文章:

  • mysql提权总结(自学)
  • [数据集][目标检测]铝片表面工业缺陷检测数据集VOC+YOLO格式400张4类别
  • 晶体管-二极管三极管MOS管选型参数总结
  • ssh命令——安全远程连接Linux服务器
  • Ansible非标记语言YAML与任务剧本Playbook
  • WPF监控平台(科技大屏)[一]
  • HTML详细教程
  • 【excel】常用的50个函数与基础操作(统计函数)
  • MATLAB中的cell数组和结构体
  • Python深度学习之路:TensorFlow与PyTorch对比【第140篇—Python实现】
  • Unity中UGUI中的PSD导入工具的原理和作用
  • 删除 Oracle 软件和数据库教程
  • C语言自学笔记8----C语言Switch语句
  • 分布式搜索引擎(3)
  • PostgreSQL开发与实战(6.3)体系结构3
  • ISIS接口MD5 算法认证实验简述
  • Vue项目的搭建
  • ABB新款ACS880-04-650A-3逆变器模块ACS88004650A3加急发货
  • Science Robotics 封面论文:美国宇航局喷气推进实验室开发了自主蛇形机器人,用于冰雪世界探索
  • flutter环境搭建实践
  • CentOS无法解析部分网站(域名)
  • 使用HttpRequest工具类调用第三方URL传入普通以及文件参数并转换MultipartFile成File
  • 24计算机考研调剂 | 武汉科技大学
  • 个人网站制作 Part 11 添加用户权限管理 | Web开发项目
  • 百科源码生活资讯百科门户类网站百科知识,生活常识
  • Linux 用户和用户组管理
  • 【C++ 08】vector 顺序表的常见基本操作
  • Day67:WEB攻防-Java安全JNDIRMILDAP五大不安全组件RCE执行不出网
  • GCNv2_SLAM-CPU详细安装教程(ubuntu18.04)
  • 使用gitee自动备份文件