当前位置: 首页 > news >正文

利用 Python 处理遥感影像数据:计算年度平均影像

在地球科学、气象学以及环境监测等领域,遥感影像数据是一种重要的信息源,它们可以提供地表的地形、植被覆盖、气候变化等丰富信息。然而,随着观测技术的进步,我们通常会获得大量的遥感影像数据,如何高效地处理和分析这些数据成为了一项挑战。本文将介绍如何利用 Python 中的 GDAL 库处理遥感影像数据,并通过计算年度平均影像来提取更有意义的信息。

1. 环境准备

在开始之前,确保你已经安装了 Python 和 GDAL 库。如果还没有安装,你可以通过 pip 进行安装:

pip install gdal

2. 处理单个 TIFF 文件

我们首先定义了一个函数 process_tiff_folder,它用于处理一个包含多个 TIFF 文件的文件夹。在这个函数中,我们遍历文件夹中的每个 TIFF 文件,读取其数据并提取地理信息。然后,我们将每个像素的经纬度与高程值一起保存在一个二维数组中,以便后续处理使用。

3. 计算年度平均影像

接下来,我们定义了一个名为 calculate_yearly_mean 的函数,它用于计算给定文件夹中所有影像文件的年度平均影像。在这个函数中,我们首先读取输入文件夹中的所有影像文件,并创建一个字典来存储每年的影像数据。然后,我们遍历每个影像文件,累加每年的像素值和像素计数。最后,我们计算每年的平均影像,并将结果保存为新的 TIFF 文件。

4. 示例代码

下面是一个示例代码,演示了如何使用上述函数处理遥感影像数据:

# 输入文件夹和输出文件夹
input_folder = "path/to/input/folder"
output_folder = "path/to/output/folder"# 获取栅格数据
cols = process_tiff_folder(input_folder, output_folder)# 计算年度平均影像
calculate_yearly_mean(input_folder, output_folder)

5. 完整代码

import os
import numpy as np
from osgeo import gdaldef process_tiff_folder(folder_path, output_folder):for root, dirs, files in os.walk(folder_path):for file in files:if file.endswith(".tif"):tif_path = os.path.join(root, file)folder_name = os.path.basename(root)  # 获取文件夹名称dataset = gdal.Open(tif_path)  # 打开tif# 获取行数列数和地理信息geo_information = dataset.GetGeoTransform()col = dataset.RasterXSizerow = dataset.RasterYSizedem = dataset.GetRasterBand(1).ReadAsArray()# 获取行列数,对应其经纬度,j对于x坐标cols = []for y in range(row):rows = []for x in range(col):# 有效高程if dem[y][x] != dataset.GetRasterBand(1).GetNoDataValue():# 输出经纬度lon = geo_information[0] + x * geo_information[1] + y * geo_information[2]lat = geo_information[3] + x * geo_information[4] + y * geo_information[5]child = [lon, lat, dem[y][x], y, x]rows.append(child)cols.append(rows)return colsdef calculate_yearly_mean(input_folder, output_folder):# 获取输入文件夹中的所有影像文件路径input_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith('.tif')]# 创建输出文件夹if not os.path.exists(output_folder):os.makedirs(output_folder)# 初始化年度影像字典yearly_images = {}# 遍历所有输入影像文件for file_path in input_files:# 从文件名中提取年份和月份year = int(file_path.split('_')[1])month = int(file_path.split('_')[2].split('.')[0])# 读取影像数据dataset = gdal.Open(file_path)image = dataset.GetRasterBand(1).ReadAsArray()# 处理无效值invalid_value = dataset.GetRasterBand(1).GetNoDataValue()image[image == invalid_value] = np.nan# 初始化年份数据字典if year not in yearly_images:yearly_images[year] = {'sum': np.zeros(image.shape), 'count': np.zeros(image.shape)}# 累加每年的像素值和计数yearly_images[year]['sum'] += np.where(np.isnan(image), 0, image)yearly_images[year]['count'] += np.where(np.isnan(image), 0, 1)# 遍历年度影像字典,计算每年的平均影像并保存for year, data in yearly_images.items():# 计算每年的平均影像yearly_mean = np.divide(data['sum'], data['count'], out=np.zeros_like(data['sum']), where=data['count'] != 0)# 获取输入影像的地理转换信息dataset = gdal.Open(input_files[0])geotransform = dataset.GetGeoTransform()projection = dataset.GetProjection()# 创建输出影像driver = gdal.GetDriverByName('GTiff')output_path = os.path.join(output_folder, f'{year}_mean.tif')output_dataset = driver.Create(output_path, yearly_mean.shape[1], yearly_mean.shape[0], 1, gdal.GDT_Float32)output_dataset.SetGeoTransform(geotransform)output_dataset.SetProjection(projection)output_dataset.GetRasterBand(1).WriteArray(yearly_mean)# 关闭输出数据集output_dataset = Noneprint("年度平均影像计算完成!")# 输入文件夹和输出文件夹
input_folder = r"D:\lky\person\month"
output_folder = r"D:\lky\person\month_year"# 获取栅格数据
cols = process_tiff_folder(input_folder, output_folder)# 计算年度平均影像
calculate_yearly_mean(input_folder, output_folder)

6. 结论

通过本文介绍的方法,我们可以轻松地处理遥感影像数据,并从中提取出更有意义的信息,如年度平均影像。这些信息对于地球科学研究、自然资源管理以及环境监测等领域具有重要意义,帮助我们更好地理解和应对地球上的变化。

通过利用 Python 编程和相关库,我们可以实现对遥感影像数据的高效处理和分析,为科学研究和实际应用提供强大的工具支持。

http://www.lryc.cn/news/320016.html

相关文章:

  • 【Leetcode-73.矩阵置零】
  • redis 常见的异常
  • npm包、全局数据共享、分包
  • UnityShader:IBL
  • 每日五道java面试题之mybatis篇(三)
  • C#开发五子棋游戏:从新手到高手的编程之旅
  • ELK日志管理实现的3种常见方法
  • 深度强化学习01
  • C++ 智能指针的使用
  • Flutter 核心原理 - UI 框架(UI Framework)
  • Hive优化
  • React 的 diff 算法
  • 综合知识篇07-软件架构设计考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)
  • 【GPT-SOVITS-05】SOVITS 模块-残差量化解析
  • Flutter第四弹:Flutter图形渲染性能
  • [氮化镓]GaN中质子反冲离子的LET和射程特性
  • 【项目】C++ 基于多设计模式下的同步异步日志系统
  • 安卓国产百度网盘与国外云盘软件onedrive对比
  • 健身·健康行业Web3新尝试:MATCHI
  • VB.NET高级面试题:什么是 VB.NET?与 Visual Basic 6.0 相比有哪些主要区别?
  • 30.HarmonyOS App(JAVA)鸿蒙系统app多线程任务分发器
  • 伺服电机编码器的分辨率指得是什么?
  • WPF中使用LiveCharts绘制散点图
  • Android Studio实现内容丰富的安卓博客发布平台
  • 【GPT-SOVITS-01】源码梳理
  • 数据结构大合集02——线性表的相关函数运算算法
  • threejs案例,与静态三角形网格的基本碰撞, 鼠标环顾四周并投球游戏
  • 将FastSAM中的TextPrompt迁移到MobileSAM中
  • KY191 矩阵幂(用Java实现)
  • 基于Python的股票市场分析:趋势预测与策略制定