当前位置: 首页 > news >正文

Windows10+tensorrt+python部署yolov5

一、安装cuda

打开NVIDIA控制面板 —>帮助—>系统信息—>组件,找到驱动版本新,我这边是11.2,
在这里插入图片描述
然后去CUDA Toolkit Archive | NVIDIA Developer下载对应版本的CUDA,根据查看的CUDA型号确定对应的cuda Toolhit版本,我这边下载的是11.2.2
在这里插入图片描述建议下载network版本,
在这里插入图片描述在后续安装步骤建议选择自定义安装。
验证是否安装成功,打开cmd输入nvcc --version,显示如下信息,即成功安装。
在这里插入图片描述

二、安装cudnn

CUDNN下载并配置 https://developer.nvidia.cn/rdp/cudnn-archive
下载压缩包,然后解压。 在这里插入图片描述将解压后的三个文件夹复制到cuda的安装目录下。默认安装路径如下,可以去系统变量path中找
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
在这里插入图片描述
往系统环境变量中的 path 添加如下路径(根据自己的路径进行修改)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\libnvvp

在这里插入图片描述

三、安装pytorch

建议直接到到pytorch官网下载对应的cuda版本的GPU的torch。直接离线安装更稳妥。torchvision也是。
在这里插入图片描述

四、安装tensorrt

下载网址https://developer.nvidia.com/nvidia-tensorrt-8x-download,Windows只能下载zip。下载之后解压到自己想放的目录。按照官方文档一步步走就行
在这里插入图片描述其实8.6版本的不复制文件也可以,我就是没复制文件,直接在系统环境变量中加入路径
在这里插入图片描述在这里插入图片描述

验证是否安装成功

利用vscode打开C:\Program Files\TensorRT-8.6.1.6\samples\sampleOnnxMNIST下的sample_onnx_mnist.sln,然后重新生成。
在这里插入图片描述
接下来在C:\Program Files\TensorRT-8.6.1.6\bin中可以看见sample_onnx_mnist.exe,我们打开cmd进入到该目录下,运行sample_onnx_mnist.exe
在这里插入图片描述
出现下面结果,即成功安装。
在这里插入图片描述

五、在python环境中安装tensorrt

激活虚拟环境,进入tensorrt安装目录下的python,根据自己的python版本安装对应的tensort。
在这里插入图片描述
在这里插入图片描述
验证tensorrt是否安装成功
在这里插入图片描述

六、部署yolov5

1. yolov5s.pt转onnx在转engine

.pt文件转onnx直接利用yolov5自带的export.py输出即可,onnx转engine利用C:\Program Files\TensorRT-8.6.1.6\bin下的trtexec.exe文件

trtexec.exe --onnx=C:\PycharmProject\yolov5-7.0(myself)\yolov5s.onnx --saveEngine=C:\PycharmProject\yolov5-7.0(myself)\yolov5s.engine

接下来就可以用python+tensorrt对yolov5进行部署。

import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import cv2
import time
import ctypes
from dector_trt import Detector
import pycuda.autoinitimport numpy as npimport pycuda.driver as cuda
def detect(engine_file_path):detector = Detector(engine_file_path)capture = cv2.VideoCapture(0)# capture = cv2.VideoCapture(0)fps = 0.0while True:ret, img = capture.read()if img is None:print('No image input!')breakt1 = time.time()img = img.astype(np.float32)result_img = detector.detect(img)fps = (fps + (1. / (time.time() - t1))) / 2cv2.putText(result_img, 'FPS: {:.2f}'.format(fps), (50, 30), 0, 1, (0, 255, 0), 2)cv2.putText(result_img, 'Time: {:.3f}'.format(time.time() - t1), (50, 60), 0, 1, (0, 255, 0), 2)if ret == True:cv2.imshow('frame', result_img)if cv2.waitKey(5) & 0xFF == ord('q'):breakelse:breakcapture.release()cv2.destroyAllWindows()detector.destroy()if __name__ == '__main__':# 在程序的退出点添加这行代码,手动清理 CUDA 上下文cctx  = cuda.Device(0).make_context()# PLUGIN_LIBRARY = "weights/libmyplugins.so"# ctypes.CDLL(PLUGIN_LIBRARY)engine_file_path = 'C:\PycharmProject\yolov5-7.0(myself)\weight\yolov5s.engine'detect(engine_file_path)# 在程序的退出点添加这行代码,手动清理 CUDA 上下文ctx.pop()

但我部署的时候出现点问题,写该篇博客的时候还未解决。

ValueError: could not broadcast input array from shape (371712,) into shape (1228800,)
-------------------------------------------------------------------
PyCUDA ERROR: The context stack was not empty upon module cleanup.
-------------------------------------------------------------------
A context was still active when the context stack was being
cleaned up. At this point in our execution, CUDA may already
have been deinitialized, so there is no way we can finish
cleanly. The program will be aborted now.
Use Context.pop() to avoid this problem.

有遇到该问题并解决的还请留个言,告诉我解决办法,谢谢。

http://www.lryc.cn/news/318824.html

相关文章:

  • 【前端框架的发展史详细介绍】
  • [JAVAEE]—进程和多线程的认识
  • sqllab第十九关通关笔记
  • 张量维度改变总结
  • C++ ezOptionParse的用法
  • MATLAB:一些杂例
  • 使用OpenCV实现两张图像融合在一起
  • PyTorch学习笔记之基础函数篇(十)
  • kubernetes部署集群
  • 软件工程师,该偿还一下技术债了
  • HTML5、CSS3面试题(三)
  • pytorch之诗词生成6--eval
  • Django自定义中间件
  • 【JavaScript】JavaScript 运算符 ① ( 运算符分类 | 算术运算符 | 浮点数 的 算术运算 精度问题 )
  • 掘根宝典之C++迭代器简介
  • DP-力扣 120.三角形最小路径和
  • 【WEEK3】学习目标及总结【SpringMVC】【中文版】
  • peft模型微调--Prompt Tuning
  • 【算法训练营】周测1
  • PyTorch Dataset、DataLoader长度
  • 动态IP和静态IP
  • 中电金信:技术实践|Flink维度表关联方案解析
  • HQL 55 题【持续更新】
  • lqb省赛日志[8/37]-[搜索·DFS·BFS]
  • uni app 钓鱼小游戏
  • openssl3.2 - note - Decoders and Encoders with OpenSSL
  • 分享几个 Selenium 自动化常用操作
  • 【Python】【数据类型】List (列表) 的常见操作
  • 【C语言】病人信息管理系统
  • Java Spring Boot 接收时间格式的参数