当前位置: 首页 > news >正文

无人机|LQR控制算法及其无人机控制中的应用仿真

前言

LQR全称Linear Quadratic Regulator(线性二次调节器),顾名思义用于解决形如
x ˙ = A x + B u y = C x + D u \begin{aligned}\dot{x}&=Ax+Bu\\y&=Cx+Du\end{aligned} x˙y=Ax+Bu=Cx+Du
线性时不变系统的一种线性控制方法,是最优控制方法的一种。
LQR通过全状态反馈将不同状态加权求和得到最优控制量,本文所讨论的是无限时间LQR问题,即可以保证系统是渐进稳定的,不考虑收敛时间。该方法主要思想是构造以状态量以及控制量相关的二次代价函数,通过最小化该代价函数寻找成本最低的解。

LQR基本原理

考虑形如
x ˙ = A x + B u y = C x + D u \begin{aligned}\dot{x}&=Ax+Bu\\y&=Cx+Du\end{aligned} x˙y=Ax+Bu=Cx+Du的系统
其中控制量满足
u = − K x u=-Kx u=Kx
K为反馈矩阵
考虑无穷时间内的代价函数,由于系统无稳态误差,故时间趋于无穷时终端约束项为0
构造代价函数为
m i n J = 1 2 ∫ 0 ∞ ( x T Q x + u T R u ) d t , Q = Q T , R = R T , Q ≥ 0 , R > 0 min J=\frac1{2}\int_0^\infty(x^TQx+u^TRu)dt,Q=Q^T,R=R^T,Q\geq0,R>0 minJ=210(xTQx+uTRu)dt,Q=QT,R=RT,Q0,R>0
一般地,Q和R均为正定对角阵。
求解该代价函数最小时所对应的K矩阵,即可求得最优控制量。
matlab中可以直接使用工具包求解,如

K=lqr(A,B,Q,R)

公式推导

利用拉格朗日乘子法构造增广泛函
J , = ∫ 0 ∞ ( 1 2 ( x T Q x + u T R u ) + λ T ( A x + B u − x ˙ ) ) d t J^{,}=\int_0^\infty(\frac1{2}(x^TQx+u^TRu)+\lambda^T(Ax+Bu-\dot{x}))dt J=0(21(xTQx+uTRu)+λT(Ax+Bux˙))dt
定义纯量函数,及哈密尔顿函数
H ( x , u , λ , t ) = 1 2 ( x T Q x + u T R u ) + λ T ( A x + B u ) H(x,u,\lambda,t)=\frac1{2}(x^TQx+u^TRu)+\lambda^T(Ax+Bu) H(x,u,λ,t)=21(xTQx+uTRu)+λT(Ax+Bu)
则有
在这里插入图片描述
由变分法可得取极值时应满足控制方程
∂ H ∂ u = 0 \frac{\partial H}{\partial u}=0 uH=0
则有
∂ H ∂ u = R u + B T λ = 0 \frac{\partial H}{\partial u}=Ru+B^T\lambda=0 uH=Ru+BTλ=0

u ∗ = − R − 1 B T λ u^*=-R^{-1}B^T\lambda u=R1BTλ
又u应为关于x得线性表达,且由上式可得此时u为 λ \lambda λ的线性表达,故 λ \lambda λ也应为x的线性表达。

λ = P x \lambda=Px λ=Px
则有
u ∗ = − R − 1 B T P x u^*=-R^{-1}B^TPx u=R1BTPx
又根据正则方程
∂ H ∂ x + λ ˙ = 0 \frac{\partial H}{\partial x}+\dot\lambda=0 xH+λ˙=0
∂ H ∂ λ = x ˙ \frac{\partial H}{\partial \lambda}=\dot x λH=x˙

λ ˙ = − ∂ H ∂ x = − Q x − A T λ = − Q x − A T P x \dot\lambda = -\frac{\partial H}{\partial x} = -Qx-A^T\lambda=-Qx-A^TPx λ˙=xH=QxATλ=QxATPx
x ˙ = ∂ H ∂ λ = A x − B R − 1 B T P x \dot x=\frac{\partial H}{\partial \lambda}=Ax-BR^{-1}B^TPx x˙=λH=AxBR1BTPx
又对 λ = P x \lambda=Px λ=Px两边求导,得
λ ˙ = P ˙ x + P x ˙ \dot\lambda=\dot Px+P\dot x λ˙=P˙x+Px˙
P为常数矩阵时,则有
− Q x − A T P x = P A x − P B R − 1 B T P x -Qx-A^TPx = PAx-PBR^{-1}B^TPx QxATPx=PAxPBR1BTPx
又x为非零矩阵,则有
P A + A T P − P B R − 1 B T P + Q = 0 PA+A^TP-PBR^{-1}B^TP+Q=0 PA+ATPPBR1BTP+Q=0
即为riccati方程
求解该方程可得P
由此可解得 u ∗ = − R − 1 B T P x u^*=-R^{-1}B^TPx u=R1BTPx

仿真

在上篇基础上进行控制器修改
TODO

http://www.lryc.cn/news/312717.html

相关文章:

  • ubuntu环境下docker容器详细安装使用
  • vue2源码分析-vue入口文件global-api分析
  • Javascript原型 ,原型链如何理解使用 ?有什么特点?
  • Flutter混合栈管理方案对比
  • Asp .Net Core 集成 Newtonsoft.Json
  • GPT对话知识库——ARM-Cortex架构分为哪几个系列?每个系列有几种工作模式?各种工作模式之间的定义和区别?每种架构不同的特点和应用需求?
  • 795. 前缀和(acwing)
  • 1910_野火FreeRTOS教程阅读笔记_prvStartFirstTask函数
  • 图论练习5
  • [C++] Volatile 和常量Const优化
  • 嵌入式学习day32 网络
  • 算法D33 | 贪心算法3 | 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果
  • html地铁跑酷
  • 利用GPT开发应用001:GPT基础知识及LLM发展
  • Golang Ants 构建协程池
  • 【金三银四】面试题汇总(持续编写中)
  • Hive的数据存储
  • ORACLE 如何使用dblink实现跨库访问
  • Sentinel 面试题及答案整理,最新面试题
  • Qt在windows编译hiredis依赖库
  • 【工作向】protobuf编译生成pb.cc和pb.py文件
  • android 快速实现 垂直SeekBar(VerticalSeekBar)
  • 算法刷题day23:双指针
  • 学术论文GPT的源码解读与二次开发:从ChatPaper到gpt_academic
  • 报表生成器FastReport .Net用户指南:表达式(下)
  • JavaScript极速入门(1)
  • 鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:浮层)
  • Meta AI移动设备上部署LLM的新框架MobileLLM
  • 使用Tesseract-OCR对PDF等图片文件进行文字识别
  • 部署YOLOv8模型的实用常见场景