当前位置: 首页 > news >正文

备战蓝桥杯---动态规划的一些思想1

话不多说,直接看题:

目录

1.双线程DP

2.正难则反+多组DP

3.换个方向思考:


1.双线程DP

可能有人会说直接贪心:先选第1条的最优路径,再选第2条最优路径。

其实我们再选第1条时,我们怎么选会对第2条的路径产生影响,不满足无后效性。

我们选另一种思路:我们可以把问题看作A同时向B传2张纸条,我们令f[i][j][m][n]表示一张纸条在(i,j),另一个在(m,n)时的最优值,这样就满足了无后效性。

易得转移方程:

f[i][j][m][n]=a[i][j]+a[m][n]+max(f[i-1][j][m-1][n],f[i-1][j][m][n-1],f[i][j-1][m-1][n],f[i][j-1][m][n-1]).

同时,我们令f[i][j][i][j]为负无穷即可。

下面是AC代码:

#include<bits/stdc++.h>
using namespace std;
int m,n,a[60][60],dp[52][52][52][52];
int f(int i,int j,int x,int y){if(dp[i][j][x][y]!=-1){return dp[i][j][x][y];}if(i==x&&j==y) return dp[i][j][x][y]=-10000000;if(i-1>=1&&x-1>=1) dp[i][j][x][y]=max(dp[i][j][x][y],f(i-1,j,x-1,y));if(i-1>=1&&y-1>=1) dp[i][j][x][y]=max(dp[i][j][x][y],f(i-1,j,x,y-1));if(j-1>=1&&x-1>=1) dp[i][j][x][y]=max(dp[i][j][x][y],f(i,j-1,x-1,y));if(j-1>=1&&y-1>=1) dp[i][j][x][y]=max(dp[i][j][x][y],f(i,j-1,x,y-1));dp[i][j][x][y]+=a[i][j]+a[x][y];return dp[i][j][x][y];
}
int main(){cin>>m>>n;memset(dp,-1,sizeof(dp));dp[1][1][1][1]=0;for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){cin>>a[i][j];}}cout<<f(m-1,n,m,n-1);
}

接题:

2.正难则反+多组DP

我们自然地想到用g[i][j]表示第i件物品不能带,背包大小为j的方案数。

直接求无从下手,我们考虑他其实就是背包大小为j的方案数-g[i][j-v[i]].

下面是AC代码:

#include<bits/stdc++.h>
using namespace std;
#define mod 10
int n,m,f[2350][2350],g[2350][2350],k[2350];
int main(){cin>>n>>m;for(int i=1;i<=n;i++) cin>>k[i];f[0][0]=1;for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){if(j<k[i]) f[i][j]=f[i-1][j]%mod;else{f[i][j]=(f[i-1][j]%mod+f[i-1][j-k[i]]%mod)%mod;}}}for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){if(j<k[i]) g[i][j]=f[n][j];else if(j==k[i])   g[i][j]=(f[n][j]-1+mod)%mod;else g[i][j]=(f[n][j]%mod-g[i][j-k[i]]%mod+mod)%mod;cout<<g[i][j]%mod;}cout<<endl;}
}

接题:

3.换个方向思考:

如果我们一行一行看,不像互不侵犯可以枚举,于是我们换个角度,我们斜着看,即:

我们发现,在斜着的一列,要敲某一个则必须把他斜上方的都敲了,因此,我们一定是敲的靠上的斜着的某一段。

同时他靠右的一斜列至少要敲到他的层数-1.这样子就合法了。

我们令f[i][j][k]表示前i列共敲了j块,第i列敲了k块。

易得转移方程:

f[i][j][k]=max(f[i-1][j-k][0--(k+1)]+sum[i][k]]).

下面是AC代码:

#include<bits/stdc++.h>
using namespace std;
int n,m,a[60][60],sum[60][60],dp[55][510][55];
int main(){cin>>n>>m;for(int i=1;i<=n;i++){for(int j=1;j<=n-i+1;j++){cin>>a[i][j];}}for(int i=1;i<=n;i++){for(int j=1;j<=n-i+1;j++){sum[i][j]=sum[i-1][j]+a[i][j];}}int ans=0;memset(dp,-0x3f,sizeof(dp));dp[n][0][0]=0;dp[n][1][1]=a[1][n];for(int i=n-1;i>=1;i--){for(int j=0;j<=m;j++){for(int k=0;k<=min(n-i+1,j);k++){for(int w=max(k-1,0);w<=n-i;w++){dp[i][j][k]=max(sum[k][i]+dp[i+1][j-k][w],dp[i][j][k]);ans=max(ans,dp[i][j][k]);}}}}cout<<ans;
}

http://www.lryc.cn/news/309577.html

相关文章:

  • 基于BERTopic模型的中文文本主题聚类及可视化
  • MySQL:函数
  • C/C++内存管理及内存泄漏详解
  • 什么是系统工程(字幕)41
  • 测开新手:pytest+requests+allure自动化测试接入Jenkins学习
  • 学习网络编程No.11【传输层协议之UDP】
  • 向爬虫而生---Redis 基石篇6 <拓展HyperLogLog>
  • JavaScript中的this
  • 宝塔php站点设置伪静态规则 访问 a.com 时候跳转到 a.com/b.html
  • git介绍4.2
  • 【深入了解设计模式】组合设计模式
  • 4.Java---方法+重载
  • 蓝桥杯Java B组历年真题(2013年-2021年)
  • C++笔记(五)--- 虚函数(virtual)
  • 编写加密程序,加密规则为:将所有字母转化为该字母后的第三个字母,即A->D、B->E
  • 【笔记】:更方便的将一个List中的数据传入另一个List中,避免多重循环
  • Cisco Secure ACS 5.8.0.32 安装 + Crack 教程
  • 项目准备March
  • 集智书童 | YOLO+混合注意力机制 | YOLOv5再加4.3%才可以做对手,Transformer混合设计依旧可以卷
  • Codeforces Round 894 (Div. 3)----->C. Flower City Fence
  • CryoEM - CryoAI: Amortized Inference of Poses 工程源码复现
  • 项目预备知识
  • redis实战笔记汇总
  • elment-ui table表格排序后 清除排序箭头/恢复默认排序 的高亮样式
  • MySQL数据库基本操作(二)
  • Unity(第十部)时间函数和文件函数
  • 【Java学习笔记】
  • Python列表生成式你学会了吗
  • 【Mybatis】快速入门 基本使用 第一期
  • 在 Rust 中实现 TCP : 1. 联通内核与用户空间的桥梁