当前位置: 首页 > news >正文

STM32-ADC一步到位学习手册

1.按部就班陈述概念

ADC 是 Analog-to-Digital Converter 的缩写,指的是模拟/数字转换器。它将连续变量的模拟信号转换为离散的数字信号。在 STM32 中,ADC 具有高达 12 位的转换精度,有多达 18 个测量通道,其中 16 个为外部通道,2 个为内部通道。各通道的 A/D 转换可以单次、连续、扫描或间断模式执行,并将扫描结果存储在 16 位的数据寄存器中

2.突如其来的结构讲解

  • 输入电压范围:ADC 所能测量的电压范围,一般为 0 ~ VREF+,其中 VREF+ 可以是 VDDA 或外部参考电压
  • 输入通道:ADC 的信号通过输入通道进入单片机内部,每个通道可以是外部的 GPIO 或内部的 VREFINT、VSS、温度传感器等
  • 转换通道:ADC 的输入通道在转换时又分为规则通道和注入通道,规则通道最多有 16 路,注入通道最多有 4 路,它们可以有不同的转换顺序和触发方式
  • 触发源:ADC 的转换可以由软件或外部触发,外部触发可以是定时器或外部引脚,它们可以有不同的极性和源选择
  • 转换周期:ADC 的转换需要一定的采样时间和转换时间,采样时间可以由 SMP[2:0] 位设置,转换时间由 ADC 时钟决定,总转换时间为 Tconv = 采样时间 + 12.5 个周期
  • 数据寄存器:ADC 的转换结果存储在 16 位的数据寄存器中,可以是左对齐或右对齐,可以是单个或双个,可以是规则或注入
  • 数据传输:ADC 的转换结果可以通过中断或 DMA 的方式传输到内存或其他外设,可以设置不同的传输模式和优先级

3.程序实例

数据转换结束后,可以产生中断,中断分为三种:规则通道转换结束中断,注入转换通道转换结
束中断,模拟看门狗中断,除了产生中断外,还可以产生 DMA 请求。因此代码部分,我仅采用单通道和 AD多通道。

AD单通道

   RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟/*设置ADC时钟*/RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0引脚初始化为模拟输入/*规则组通道配置*/ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);		//规 则组序列1的位置,配置为通道0/*ADC初始化*/ADC_InitTypeDef ADC_InitStructure;						//定义结构体变量ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;		//模式,选择独立模式,即单独使用ADC1ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//数据对齐,选择右对齐ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//外部触发,使用软件触发,不需要外部触发ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;		//连续转换,失能,每转换一次规则组序列后停止ADC_InitStructure.ADC_ScanConvMode = DISABLE;			//扫描模式,失能,只转换规则组的序列1这一个位置ADC_InitStructure.ADC_NbrOfChannel = 1;					//通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1ADC_Init(ADC1, &ADC_InitStructure);						//将结构体变量交给ADC_Init,配置ADC1/*ADC使能*/ADC_Cmd(ADC1, ENABLE);									//使能ADC1,ADC开始运行/*ADC校准*/ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准while (ADC_GetResetCalibrationStatus(ADC1) == SET);ADC_StartCalibration(ADC1);while (ADC_GetCalibrationStatus(ADC1) == SET);
}

AD带中断

GPIO_InitTypeDef GPIO_InitStructure;// 打开 ADC IO端口时钟ADC_GPIO_APBxClock_FUN ( ADC_GPIO_CLK, ENABLE );// 配置 ADC IO 引脚模式// 必须为模拟输入GPIO_InitStructure.GPIO_Pin = ADC_PIN;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;// 初始化 ADC IOGPIO_Init(ADC_PORT, &GPIO_InitStructure);				
}/*** @brief  配置ADC工作模式* @param  无* @retval 无*/
static void ADCx_Mode_Config(void)
{ADC_InitTypeDef ADC_InitStructure;	// 打开ADC时钟ADC_APBxClock_FUN ( ADC_CLK, ENABLE );// ADC 模式配置// 只使用一个ADC,属于独立模式ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;// 禁止扫描模式,多通道才要,单通道不需要ADC_InitStructure.ADC_ScanConvMode = DISABLE ; // 连续转换模式ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;// 不用外部触发转换,软件开启即可ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;// 转换结果右对齐ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;// 转换通道1个ADC_InitStructure.ADC_NbrOfChannel = 1;	// 初始化ADCADC_Init(ADCx, &ADC_InitStructure);// 配置ADC时钟为PCLK2的8分频,即9MHzRCC_ADCCLKConfig(RCC_PCLK2_Div8); // 配置 ADC 通道转换顺序和采样时间ADC_RegularChannelConfig(ADCx, ADC_CHANNEL, 1, ADC_SampleTime_55Cycles5);// ADC 转换结束产生中断,在中断服务程序中读取转换值ADC_ITConfig(ADCx, ADC_IT_EOC, ENABLE);// 开启ADC ,并开始转换ADC_Cmd(ADCx, ENABLE);// 初始化ADC 校准寄存器  ADC_ResetCalibration(ADCx);// 等待校准寄存器初始化完成while(ADC_GetResetCalibrationStatus(ADCx));// ADC开始校准ADC_StartCalibration(ADCx);// 等待校准完成while(ADC_GetCalibrationStatus(ADCx));// 由于没有采用外部触发,所以使用软件触发ADC转换 ADC_SoftwareStartConvCmd(ADCx, ENABLE);
}static void ADC_NVIC_Config(void)
{NVIC_InitTypeDef NVIC_InitStructure;// 优先级分组NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);// 配置中断优先级NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQ;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);
}

4.结语

ADC 是 stm32 单片机的一个重要的外设,它可以让我们获取外部的模拟信号,并进行一些有用的操作,例如:

  • 测量电压、电流、电阻、电容等电路参数
  • 测量温度、湿度、气压、光照等环境参数
  • 采集声音、图像、视频等多媒体信号
  • 实现模拟信号的滤波、放大、调制、解调等信号处理

http://www.lryc.cn/news/309545.html

相关文章:

  • 【文件管理】关于上传下载文件的设计
  • 微服务架构 SpringCloud
  • 前端 css 实现标签的效果
  • SLAM基础知识-卡尔曼滤波
  • 云时代【6】—— 镜像 与 容器
  • 【QT+QGIS跨平台编译】之五十三:【QGIS_CORE跨平台编译】—【qgssqlstatementparser.cpp生成】
  • JMeter性能测试基本过程及示例
  • 你知道什么是回调函数吗?
  • mac苹果电脑c盘满了如何清理内存?2024最新操作教程分享
  • k8s-kubeapps图形化管理 21
  • 1_Springboot(一)入门
  • Docker Machine简介
  • GWO优化高斯回归预测(matlab代码)
  • LaTeX-设置图像与表格位置
  • STM32 DMA入门指导
  • mysql根据指定顺序返回数据--order by field
  • IEEE SGL与NVMe SGL的区别?
  • struct内存对齐
  • 探索Redis 6.0的新特性
  • 关于CSS中定位的教程
  • 抽象类、模板方法模式
  • 消息队列kafka
  • 复盘成长——2024.2月复盘
  • Kafka安全模式之身份认证
  • 3、Redis-List【常用】
  • 黑马c++ STL部分 笔记(7) list容器
  • 关于使用Mxnet GPU版本运行DeepAR报错解决方案
  • 【STM32】江科大STM32学习笔记汇总(50)
  • LabVIEW非接触式电阻抗层析成像系统
  • 蓝桥杯备战刷题three(自用)