YOLOv9中加入SCConv模块!
专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!
一、本文介绍
本文将一步步演示如何在YOLOv9中添加 / 替换新模块,寻找模型上的创新!
适用检测目标: YOLOv9模块通用改进
二、改进步骤
《YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information》
论文地址: https://arxiv.org/abs/2402.13616
代码地址: https://github.com/WongKinYiu/yolov9
2.1 创建一个脚本存放新模块
为方便调用,这里我将脚本放在models包下,命名为extra.py。
2.2 将模块复制到脚本中,并导入需要的包(以SCConv为例)
我们将SCConv的代码复制到刚刚创建的extra.py脚本中。
import torch
import torch.nn as nn
import torch.nn.functional as Ffrom models.common import Convclass SCConv(nn.Module):"""https://github.com/MCG-NKU/SCNet/blob/master/scnet.py"""def __init__(self, inplanes, planes, stride=1, padding=1, dilation=1, groups=1, pooling_r=4):super(SCConv, self).__init__()self.k2 = nn.Sequential(nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r),Conv(inplanes, planes, k=3, s=1, p=padding, d=dilation, g=groups, act=False))self.k3 = Conv(inplanes, planes, k=3, s=1, p=padding, d=dilation, g=groups, act=False)self.k4 = Conv(inplanes, planes, k=3, s=1, p=padding, d=dilation, g=groups, act=False)def forward(self, x):identity = xout = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)out = self.k4(out) # k4return out
2.3 对yolo.py操作
打开models包下的yolo.py文件夹,将刚才创建的脚本导入。并在下方第700行的位置(位置可能因v9版本更新变动)加入下方代码。
2.4 运行配置文件
创建模型配置文件(yaml文件),将我们所作改进加入到配置文件中(这一步的配置文件可以复制models - > detect 下的yaml修改。)。对YOLO系列yaml文件不熟悉的同学可以看我往期的yaml详解教学!
YOLO系列 “.yaml“文件解读-CSDN博客
# YOLOv9# parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []], # conv down[-1, 1, Conv, [64, 3, 2]], # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]], # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3# avg-conv down[-1, 1, ADown, [256]], # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5# avg-conv down[-1, 1, ADown, [512]], # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7# avg-conv down[-1, 1, ADown, [512]], # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]], # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]], # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]], # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]], # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]], # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]], # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]], # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28# avg-conv down fuse[-1, 1, ADown, [256]], # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31# avg-conv down fuse[-1, 1, ADown, [512]], # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34# avg-conv down fuse[-1, 1, ADown, [512]], # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37[-1, 1, SCConv, []], # 38# detection head# detect[[31, 34, 38, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)]
3.4 训练过程
最后,复制我们创建的模型配置,填入训练脚本(train_dual)中(不会训练的同学可以参考我之前的文章。),运行即可。
YOLOv9 最简训练教学!-CSDN博客
如果觉得本文章有用的话给博主点个关注吧!