【更新完毕】2024牛客寒假算法基础集训营6 题解 | JorbanS
文章目录
- [A - 宇宙的终结](https://ac.nowcoder.com/acm/contest/67746/A)
- [B - 爱恨的纠葛](https://ac.nowcoder.com/acm/contest/67746/B)
- [C - 心绪的解剖](https://ac.nowcoder.com/acm/contest/67746/C)
- [D - 友谊的套路](https://ac.nowcoder.com/acm/contest/67746/D)
- [E - 未来的预言](https://ac.nowcoder.com/acm/contest/67746/E)
- [F - 命运的抉择](https://ac.nowcoder.com/acm/contest/67746/F)
- [G - 人生的起落](https://ac.nowcoder.com/acm/contest/67746/G)
- [I - 时空的交织](https://ac.nowcoder.com/acm/contest/67746/I)
- [J - 绝妙的平衡](https://ac.nowcoder.com/acm/contest/67746/J)
A - 宇宙的终结
暴力枚举三个数即可
int p[9] = {2, 3, 5, 7, 11, 13, 17, 19, 23};bool check(int x) {for (int i = 0; i < 9; i ++)for (int j = i + 1; j < 9; j ++)for (int k = j + 1; k < 9; k ++)if (p[i] * p[j] * p[k] == x) return true;return false;
}int solve() {int l, r; cin >> l >> r;for (int i = l; i <= r; i ++)if (check(i)) return i;return -1;
}
B - 爱恨的纠葛
找到一对数 ( a i , b j ) (a_i,~b_j) (ai, bj) 使其差最小,对于每一个 b i b_i bi,二分查找其大于等于和小于它的第一个 a i a_i ai,最后输出保证 a i a_i ai 在 b j b_j bj 所在位置
void solve() {cin >> n;map<int, int> mp;for (int i = 0; i < n; i ++) cin >> a[i];for (int i = 0; i < n; i ++) cin >> b[i];sort(a, a + n);int pos = -1, Min = 1e9, num;for (int i = 0; i < n; i ++) {int t = lower_bound(a, a + n, b[i]) - a;if (abs(b[i] - a[t]) < Min) {Min = abs(b[i] - a[t]);pos = i;num = t;}if (t && abs(b[i] - a[t - 1]) < Min) {Min = abs(b[i] - a[t - 1]);pos = i;num = t - 1;}}vector<int> c;for (int i = 0; i < n; i ++)if (i != num) c.emplace_back(a[i]);for (int i = 0; i <= pos - 1; i ++) cout << c[i] << ' ';cout << a[num] << ' ';for (int i = pos; i < n - 1; i ++) cout << c[i] << ' ';cout << endl;
}
C - 心绪的解剖
先求出 0 ∼ 1 0 9 0\sim10^9 0∼109 的斐波那契数列
法一:预处理出所有三个斐波那契数可能形成的数
int f[N];
map<int, int> p;void solve() {cin >> n;int t = p[n];if (t) {cout << a[t] << ' ' << b[t] << ' ' << c[t] << endl;} else cout << -1 << endl;
}signed main() {FastIOf[0] = 0, f[1] = 1;for (int i = 2; i <= 44; i ++) f[i] = f[i - 1] + f[i - 2];int idx = 0;for (int i = 0; i <= 44; i ++)for (int j = 0; j <= 44; j ++)for (int k = 0; k <= 44; k ++) {p[f[i] + f[j] + f[k]] = ++ idx;a[idx] = f[i];b[idx] = f[j];c[idx] = f[k];}Casessolve();return 0;
}
法二:由于每个数都可由至少另外两个数表示,所以贪心的,每次减去尽可能大的值
三次二分,每次减去二分出来的值
D - 友谊的套路
双方均有可能让二追三
void solve() {double res = 0, p; cin >> p;res += p * p * p * (1 - p) * (1 - p);res += p * p * (1 - p) * (1 - p) * (1 - p);printf("%.8lf\n", res);
}
E - 未来的预言
模拟一下
void solve() {getchar();getchar();cin >> m >> s;n = s.size();int r = 0, p = 0;for (int i = 1; i <= n; i ++) {if (s[i - 1] == 'R') r ++;else p ++;if (r > m >> 1) {cout << R << endl << i << endl;return;}if (p > m >> 1) {cout << P << endl << i << endl;return;}}cout << "to be continued." << endl << n << endl;
}
F - 命运的抉择
先预处理每个数的全部质因数( 1 1 1 特殊处理)
并查集维护每个数是否需要处于同一组
int n, m, k;
int a[N], b[N], p[N];
vector<vector<int>> e(N);int find(int x) { return x == p[x] ? x : p[x] = find(p[x]); }void solve() {cin >> n;for (int i = 1; i <= n; i ++) p[i] = i;vector<int> q;for (int i = 1; i <= n; i ++) {cin >> a[i];for (auto j : e[a[i]])if (!b[j]) b[j] = i, q.emplace_back(j);else p[find(i)] = find(b[j]);}for (auto i : q) b[i] = 0;int cnt = 0;for (int i = 2; i <= n; i ++) cnt += find(1) != find(i);if (!cnt) {cout << "-1 -1" << endl;return;}cout << n - cnt << ' ' << cnt << endl;for (int i = 1; i <= n; i ++) if (p[1] == p[i]) cout << a[i] << ' ';cout << endl;for (int i = 1; i <= n; i ++) if (p[1] != p[i]) cout << a[i] << ' ';cout << endl;
}signed main() {FastIOe[1].emplace_back(1);for (int i = 2; i <= 1e6; i ++)if (e[i].empty())for (int j = i; j <= 1e6; j += i)e[j].emplace_back(i);Casessolve();return 0;
}
G - 人生的起落
先特判当 2 k + 1 > n 2k+1\gt n 2k+1>n 时必然不成立
贪心地,让 2 1 2 2~1~2 2 1 2 作为三元组,则当 k ≠ 0 k\neq0 k=0 时若 m < n + k + 1 m\lt n+k+1 m<n+k+1 时必然不成立
若 k = 0 k=0 k=0,让除了第一个位置的所有数填 1 1 1,第一个位置填剩余的数即可
当 k > 0 k\gt0 k>0 时,
构造 x y x x~y~x x y x,使得 x x x 尽可能大,剩下的先全部放 1 1 1,设剩下的为 m , m < k + 1 m,~m\lt k+1 m, m<k+1
若正好铺满,即 2 k + 1 = n 2k+1=n 2k+1=n 时,若 x = y + 1 x=y+1 x=y+1,则不成立,否则将 m m m 个谷位置 + 1 +1 +1
若未正好铺满,则让 a [ 2 k + 1 ] : = m a[2k+1]:=m a[2k+1]:=m
void solve() {cin >> n >> m >> k;if (k * 2 + 1 > n || k && m < n + k + 1) {cout << -1 << endl;return;}for (int i = 0; i < n; i ++) a[i] = 1, m --;if (k) {for (int i = 0; i <= k << 1; i += 2) a[i] += m / (k + 1);m %= k + 1;if (k * 2 + 1 == n) {if (a[0] == a[1] + 1 && m) {cout << -1 << endl;return;}for (int i = 1; i <= m * 2 - 1; i += 2) a[i] ++;} else a[k * 2 + 1] += m;} else a[0] += m;for (int i = 0; i < n; i ++) cout << a[i] << " \n"[i == n - 1];
}
I - 时空的交织
∑ i = 1 n ∑ j = 1 m a i × b j = ∑ i = 1 n a i × ∑ j = 1 m b j \sum_{i=1}^n\sum_{j=1}^ma_i\times b_j=\sum_{i=1}^na_i\times\sum_{j=1}^m b_j ∑i=1n∑j=1mai×bj=∑i=1nai×∑j=1mbj
转化为 a , b a,~b a, b 连续子序列和的最大乘积
ll cal() {ll t = 0, A = -1e18, B = -1e18;for (int i = 0; i < n; i ++) {if (a[i] >= -t) t += a[i];else t = 0;A = max(A, t);}t = 0;for (int i = 0; i < m; i ++) {if (b[i] >= -t) t += b[i];else t = 0;B = max(B, t);}return A * B;
}ll solve() {cin >> n >> m;int MaxA = -1e9, MaxB = -1e9;int MinA = 1e9, MinB = 1e9;for (int i = 0; i < n; i ++) {cin >> a[i];MaxA = max(MaxA, a[i]);MinA = min(MinA, a[i]);}for (int i = 0; i < m; i ++) {cin >> b[i];MaxB = max(MaxB, b[i]);MinB = min(MinB, b[i]);}ll res = max(MaxA * MinB, MinA * MaxB);if (MinA >= 0 && MaxB <= 0 || MaxA <= 0 && MinB >= 0) return res;res = max(res, cal());for (int i = 0; i < n; i ++) a[i] *= -1;for (int i = 0; i < m; i ++) b[i] *= -1;res = max(res, cal());return res;
}
J - 绝妙的平衡
因为对于红节点的子树和已为 3 3 3 的倍数,则对于某一个红节点来说,无需考虑该红节点子树中的子红节点子树,将未涂色的节点和该红节点构造和为 3 3 3 的倍数即可
int n, f[N], a[N];
string s;
vector<vector<int>> e(N), E(N);
vector<int> R;void dfs(int u = 1, int fa = 0) {if (s[u] == 'W') f[u] = f[fa];for (auto v : e[u]) if (v != fa) dfs(v, u);
}void solve() {cin >> n >> s;s = " " + s;for (int i = 2; i <= n; i ++) {int x; cin >> x;e[x].emplace_back(i);}for (int i = 1; i <= n; i ++) f[i] = i, a[i] = 1;dfs();for (int i = 1; i <= n; i ++) {if (f[i] == i) R.emplace_back(i);E[f[i]].emplace_back(i);}for (auto u : R) {if (E[u].size() == 1) {cout << -1 << endl;return;}if (E[u].size() & 1) {for (int i = 0; i < 3; i ++) a[E[u][i]] = 1;for (int i = 3; i < E[u].size(); i ++) a[E[u][i]] = (i & 1) + 1;} else {for (int i = 0; i < E[u].size(); i ++) a[E[u][i]] = (i & 1) + 1;}}for (int i = 1; i <= n; i ++) cout << a[i];cout << endl;
}