当前位置: 首页 > news >正文

pclpy 最小二乘法拟合平面

pclpy 最小二乘法拟合平面

      • 一、算法原理
      • 二、代码
      • 三、结果
          • 1.左边原点云、右边最小二乘法拟合平面后点云投影
      • 四、相关数据

一、算法原理

平面方程的一般表达式为:
A x + B y + C z + D = 0 ( C ≠ 0 ) Ax + By + Cz + D = 0 \quad (C\neq0) Ax+By+Cz+D=0(C=0)
即:
Z = − A C x − B C y − D C Z = -\frac{A}{C}x-\frac{B}{C}y-\frac{D}{C} Z=CAxCByCD
记:
a 0 = − A C , a 1 = − B C , a 2 = − D C a_0 = -\frac{A}{C}, a_1 =-\frac{B}{C}, a_2=-\frac{D}{C} a0=CA,a1=CB,a2=CD
所以:
Z = a 0 x + a 1 y + a 2 Z = a_0x + a_1y + a_2 Z=a0x+a1y+a2
要用该 n 个点拟合平面方程,即使:
∑ n = 1 N ( a 0 x + a 1 y + a 2 ) 2 − > m i n \sum_{n=1}^{N}{(a_0x + a_1y + a_2)^2}->min n=1N(a0x+a1y+a2)2>min
要使S最小,对a,b,c求偏导

在这里插入图片描述

改写成矩阵的形式为:

在这里插入图片描述

二、代码

from pclpy import pcl
import numpy as npdef CloudShow(cloud1, cloud2):"""Args:在一个窗口可视化多个点云cloud1: 点云数据1cloud2: 点云数据2"""viewer = pcl.visualization.PCLVisualizer("viewer")  # 建立可刷窗口对象 窗口名 viewerv0 = 1  # 设置标签名(0, 1标记第一个窗口)viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v0)  # 创建一个可视化的窗口viewer.setBackgroundColor(0.0, 0.0, 0.0, v0)  # 设置窗口背景为黑色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud1, 255.0, 0, 0.0)  # 将点云设置为红色viewer.addPointCloud(cloud1,  # 要添加到窗口的点云数据。single_color,  # 指定点云的颜色"sample cloud1",  # 添加的点云命名v0)  # 点云添加到的视图v1 = 2  # 设置标签名(2代表第二个窗口)viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v1)  # 创建一个可视化的窗口viewer.setBackgroundColor(255.0, 255.0, 255.0, v1)  # 设置窗口背景为白色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud2, 0.0, 255.0, 0.0)  # 将点云设置为绿色viewer.addPointCloud(cloud2,  # 要添加到窗口的点云数据。single_color,  # 指定点云的颜色"sample cloud2",  # 添加的点云命名v1)  # 点云添加到的视图# 设置点云窗口(可移除对点云可视化没有影响)viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud1",  # 识别特定点云v0)  # 在那个窗口可视化viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud2",  # 识别特定点云v1)  # 在那个窗口可视化# viewer.addCoordinateSystem(1.0)  # 设置坐标轴 坐标轴的长度为1.0# 窗口建立while not viewer.wasStopped():viewer.spinOnce(10)def plane(cloud, normal_vector):coeffs = pcl.ModelCoefficients()  # 创建了一个模型系数对象coeffs.values.append(normal_vector[0])  # a = 0.0coeffs.values.append(normal_vector[1])  # b = 0.0coeffs.values.append(normal_vector[2])  # c = 1.0coeffs.values.append(normal_vector[3])  # d = 0.0# 创建滤波器proj = pcl.filters.ProjectInliers.PointXYZ()  # 过滤器对象 proj,用于将点云投影到一个模型上。proj.setModelType(0)  # 模型类型被设为 0,代表使用平面模型。proj.setInputCloud(cloud)  # 将cloud点云数据进行处理proj.setModelCoefficients(coeffs)  # 处理参数coeffscloud_projected = pcl.PointCloud.PointXYZ()  # 建立保存点云proj.filter(cloud_projected)  # 将投影结果保存return cloud_projectedif __name__ == '__main__':cloud1 = pcl.PointCloud.PointXYZ()reader = pcl.io.PCDReader()  # 设置读取对象reader.read('res/bunny.pcd', cloud1)  # 读取点云保存在cloud中# 调用函数,生成离散点x, y, z = cloud1.x, cloud1.y, cloud1.zN =  cloud1.size()# ------------------------构建系数矩阵-----------------------------A = np.array([[sum(x ** 2), sum(x * y), sum(x)],[sum(x * y), sum(y ** 2), sum(y)],[sum(x), sum(y), N]])B = np.array([[sum(x * z), sum(y * z), sum(z)]])# 求解X = np.linalg.solve(A, B.T)print('平面拟合结果为:z = %.3f * x + %.3f * y + %.3f' % (X[0], X[1], X[2]))a, b, c, d = X[0], X[1], -1, X[2]plane_cloud = plane(cloud1, [a, b, c, d])  # 获得投影后的点云数据# ------------------ 可视化点云 -----------------CloudShow(cloud1, plane_cloud) 

三、结果

1.左边原点云、右边最小二乘法拟合平面后点云投影

在这里插入图片描述

四、相关数据

最小二乘法拟合参考链接:最小二乘拟合平面(python/C++版) - 知乎 (zhihu.com)

http://www.lryc.cn/news/306306.html

相关文章:

  • 蓝桥杯备战刷题(自用)
  • Python习题详解
  • 绩效考核利器:Excel报表模板,解锁企业高效员工评价新境界
  • 如何使用Lychee+cpolar搭建本地私人图床并实现远程访问存储图片
  • 跨境支付介绍
  • 如何在Linux搭建MinIO服务并实现无公网ip远程访问内网管理界面
  • Cortex-M可以跑Linux操作系统吗?
  • 日志系统项目(2)项目实现(实用工具类、日志等级类、日志消息类、日志格式化输出类)
  • 剑指offer面试题19 二叉树的镜像
  • SpringCloud Alibaba 2022之Nacos学习
  • js之数组遍历
  • 极狐GitLab 16.9 重磅发布,快来 pick 你心仪的功能吧~【五】
  • 如何在本地部署密码管理软件bitwarden并结合cpolar实现远程同步
  • DT DAY3 信号和槽
  • Spring、SpringBoot、SpringCloud三者的区别
  • leetcode:46.全排列
  • 基于STM32的宠物箱温度湿度监控系统
  • 《高质量的C/C++编程规范》学习
  • 客户端订阅服务端事件的机制
  • pulsar入门介绍
  • Leetcode 3047. Find the Largest Area of Square Inside Two Rectangles
  • ELK 简介安装
  • Linux 的交换空间(swap)是什么?有什么用?
  • 消息中间件篇之RabbitMQ-消息不丢失
  • MongoDB中的TTL索引:自动过期数据的深入解析与使用方式
  • IPV6地址
  • 解密API关键词搜索(淘宝京东1688)商品列表数据
  • wpf 简单实验 数据更新 列表更新
  • 【Flink精讲】Flink性能调优:内存调优
  • Java 中常用的数据结构类 API