当前位置: 首页 > news >正文

采用遗传算法搜索MAC效率最高的矩阵乘规模

如何采用遗传算法搜索MAC效率最高的矩阵乘规模

  • 具体实现
    • MAC效率评估代码(eval.py)
    • 遗传算法实现

本文介绍了采用遗传算法搜索MAC效率最高的矩阵乘规模
需求背景:

  • 一些AI加速卡在做矩阵乘时,因硬件或软件的约束,并不是规模越大MAC效率越高
  • 在测试AI加卡的实际算力时,采用MAC效率最高的M,K,N会显得比较好看.能接近宣称的理论性能
  • 因此,可以将该问题变成一个优化的问题。M,K,N是变量,目标是最大化实测FLOPS
  • 由于某些规模的矩阵乘,加速卡不支持或有BUG,并不是所有的的优化算法都适用。经测试发现,遗传算法适合该场景

具体实现

MAC效率评估代码(eval.py)

# eval.pyimport os
import sys
import torch
import time
import numpy as np
from calflops import calculate_flopsclass MatMulModel(torch.nn.Module):def __init__(self,M,N,K):super(MatMulModel, self).__init__()self.b=torch.nn.Parameter(torch.randn(K, N))def forward(self,x):return torch.matmul(x, self.b)def evaluate(M,N,K):model=MatMulModel(M,N,K).eval()input_tensor = torch.randn(M,K)FLOPS=M*N*K    flops, macs, params = calculate_flops(model, input_shape=(M,K))print(flops)def build_and_warmup(model,M,N,K):#省略return engine   def forward(engine,input,count):for i in range(count):engine.run(input)return 0  engine=build_and_warmup(model,M,N,K)t0=time.time()count=3forward(engine,input_tensor,count)t1=time.time()flops=(count*FLOPS)/(t1-t0)tflops=flops/1000/1000/1000/1000print("MatMulResult,{},{},{},{},{:.3f}".format(M,N,K,FLOPS,tflops))return tflopsif __name__ == "__main__":evaluate(int(sys.argv[1]),int(sys.argv[2]),int(sys.argv[3]))

遗传算法实现

import os
import sys
import time
import numpy as np
import geatpy as ea
import subprocessdef eval(M,N,K):cmd="python eval.py {} {} {} > rlog.txt 2>&1".format(M,N,K)if os.path.exists("rlog.txt"):os.remove("rlog.txt")try:p=subprocess.Popen(cmd,shell=True)p.wait()with open("rlog.txt","r") as f:content = [s for s in f.readlines() if s.find("MatMulResult")>=0]if len(content)==1:ret=float(content[0].strip().split(",")[5])return retexcept:passprint("{}:{}:{} device error,reboot".format(M,N,K))p=subprocess.Popen("reboot device cmd",shell=True)p.wait()time.sleep(5)return 0class MatMulParamsProblem(ea.Problem):def __init__(self):name = 'MatMulParamsProblem'  # 初始化name(函数名称,可以随意设置)M = 1  # 初始化M(目标维数)maxormins = [-1]  # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = 3  # 初始化Dim(决策变量维数)varTypes = [1,1,1]  # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)self.Ms=range(16,10240,16)self.Ns=range(16,10240,16)self.Ks=range(16,10240,16)lb = [0,0,0]  # 决策变量下界ub = [len(self.Ms),len(self.Ns),len(self.Ks)]  # 决策变量上界lbin = [1,1,1]   # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)ubin = [0,0,0]   # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)# 调用父类构造方法完成实例化ea.Problem.__init__(self,name,M,maxormins,Dim,varTypes,lb,ub,lbin,ubin)def evalVars(self, Vars):output=[]for Var in Vars:VarInt = Var.astype(np.int32)M = self.Ms[VarInt[0]]N = self.Ns[VarInt[1]]K = self.Ks[VarInt[2]]tflops=eval(M,N,K)print("{:05d},{:05d},{:05d},{:.3f}".format(M,N,K,tflops))output.append(tflops)return np.array(output).reshape(-1,1)def calReferObjV(self):referenceObjV = np.array([[33]])return referenceObjVdef main():# 实例化问题对象problem = MatMulParamsProblem()# 构建算法algorithm = ea.soea_DE_rand_1_bin_templet(problem,ea.Population(Encoding='RI', NIND=50),MAXGEN=25,  # 最大进化代数。logTras=1,  # 表示每隔多少代记录一次日志信息,0表示不记录。trappedValue=1e-3,  # 单目标优化陷入停滞的判断阈值。maxTrappedCount=10)  # 进化停滞计数器最大上限值。algorithm.mutOper.F = 0.5  # 差分进化中的参数F。algorithm.recOper.XOVR = 0.2  # 差分进化中的参数Cr。# 求解res = ea.optimize(algorithm,verbose=True,drawing=3,outputMsg=True,drawLog=True,saveFlag=True,dirName="./GaQaunt")print(res)if __name__ == "__main__":main()
http://www.lryc.cn/news/306248.html

相关文章:

  • 流计算之Flink
  • 【Linux基础】Linux自动化构建工具make/makefile
  • 问题慢慢解决-通过android emulator调试android kernel-内核条件断点遇到的问题和临时解决方案
  • 社区发现之标签传播算法(LPA)
  • 【前端素材】推荐优质后台管理系统Dashy平台模板(附源码)
  • MFC 配置Halcon
  • xss-跨站脚本攻击漏洞
  • 在MFC对话框中嵌入web网页时事件失效问题
  • 【Leetcode】235. 二叉搜索树的最近公共祖先
  • python 基础语法及保留字
  • Parade Series - NVR Stat
  • 【shell脚本实战学习笔记】#2
  • docker 安装nacos 一脚shell脚本
  • mysql的隔离级别,和实现
  • Linux的信号
  • Spring数据脱敏实现
  • Java核心-核心类与API(4)
  • 【C语言】详解计算机二级c语言程序题
  • 限流算法
  • 备战蓝桥杯 Day10(背包dp)
  • Sora 使用教程,新手小白可用
  • 【洛谷千题详解】P1031 均分纸牌
  • 基于文本提示和语义分割的快速抠图
  • 什么是媒体发稿?发稿媒体分类及发稿流程
  • 安全测试自学手册之软件安全测试基础
  • 【LeetCode】升级打怪之路 Day 04:链表 part 2
  • JAVA编程题系列——涵盖几乎所有java内容
  • 【Android12】Monkey压力测试源码执行流程分析
  • Java架构师之路八、安全技术:Web安全、网络安全、系统安全、数据安全等
  • Codeforces Round 240 (Div. 1) C. Mashmokh and Reverse Operation(分治+逆序对)