当前位置: 首页 > news >正文

五种多目标优化算法(MOAHA、MOGWO、NSWOA、MOPSO、NSGA2)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

一、5种多目标优化算法简介

1.1MOAHA

1.2MOGWO

1.3NSWOA

1.4MOPSO

1.5NSGA2

二、5种多目标优化算法性能对比

为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3),其中Viennet2 与Viennet3的目标数为3,其余测试函数的目标数为2,并采用6种评价指标(IGD、GD、HV、Coverage、Spread、Spacing)进行评价对比

2.1部分代码

close all;
clear ;
clc;
addpath('./MOAHA/')%添加算法路径
addpath('./MOGWO/')%添加算法路径
addpath('./NSWOA/')%添加算法路径
addpath('./MOPSO/')%添加算法路径
addpath('./NSGA2/')%添加算法路径
%%
% TestProblem测试问题说明:
%一共9个多目标测试函数1-9分别是: zdt1 zdt2 zdt3 zdt4 zdt6 Schaffer  Kursawe Viennet2 Viennet3
%%
TestProblem=3;%测试函数1-9
MultiObj = GetFunInfo(TestProblem);
MultiObjFnc=MultiObj.name;%问题名
% Parameters
params.Np = 100;        % Population size 种群大小
params.Nr = 200;        % Repository size 外部存档
params.maxgen=100;    % Maximum number of generations 最大迭代次数
numOfObj=MultiObj.numOfObj;%目标函数个数
%% 算法求解,分别得到paretoPOS和paretoPOF
[Xbest1,Fbest1] = MOAHA(params,MultiObj);
[Xbest2,Fbest2] = MOGWO(params,MultiObj);
[Xbest3,Fbest3]  = NSWOA(params,MultiObj);
[Xbest4,Fbest4] = MOPSO(params,MultiObj);
[Xbest5,Fbest5]  = NSGA2(params,MultiObj);
FbestData(1).data=Fbest1;
FbestData(2).data=Fbest2;
FbestData(3).data=Fbest3;
FbestData(4).data=Fbest4;
FbestData(5).data=Fbest5;
%% 获取测试函数的真实pareto前沿
True_Pareto=MultiObj.truePF;
%% 计算每个算法的评价指标
% ResultData的值分别是IGD、GD、HV、Coverage、Spread、Spacing
Fbest=Fbest1;
ResultData(1,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest2;
ResultData(2,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest3;
ResultData(3,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest4;
ResultData(4,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest5;
ResultData(5,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
 

2.2部分结果

(2)以ZDT1为例:

(2)以Viennet3为例:

三、完整MATLAB代码

http://www.lryc.cn/news/302917.html

相关文章:

  • 用 LangChain 和 Milvus 从零搭建 LLM 应用
  • [Bug解决] Invalid bound statement (not found)出现原因和解决方法
  • Qt:Qt3个窗口类的区别、VS与QT项目转换
  • uni-app判断不同端
  • 计算机网络-网络设备防火墙是什么?
  • Code Composer Studio (CCS) - Breakpoint (断点)
  • 人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_001---人工智能工作笔记0096
  • 分层钱包HD钱包
  • 基于python+mysql的宠物领养网站系统
  • 机器学习入门--门控循环单元(GRU)原理与实践
  • GitHub Actions
  • harmony 鸿蒙系统学习 安装ohpm报错 ohpm install failed
  • MySQL Replication
  • redis分布式锁redisson
  • 制作一个简单的html网页
  • js filter,every,includes 过滤数组
  • jenkins自动化部署
  • 【JavaScript】分支语句
  • 【开源】SpringBoot框架开发农家乐订餐系统
  • OSQP文档学习
  • ONLYOFFICE 8.0:引领数字化办公新纪元
  • 「Linux」基础命令
  • 三防平板丨平板终端丨加固平板丨户外勘测应用
  • npm ERR! code CERT_HAS_EXPIRED:解决证书过期问题
  • npm报错之package-lock.json found. 问题和淘宝镜像源过期问题
  • 大模型提示学习、Prompting微调知识
  • vue 导出,下载错误提示、blob与json数据转换
  • 代码随想录算法训练营|二叉树总结
  • rtt的io设备框架面向对象学习-uart设备
  • PyCharm - Script parameters (脚本参数)