当前位置: 首页 > news >正文

【感知算法】Dempster-Shafer理论(下)

尝试DS理论应用到自动驾驶地图众包更新。

地图特征变化判断

a mass function is applied to quantify the evidence of the existence.
existence state: existenct、non-existent、tenative、conflict
∃ ∄ Ω ϕ \exist \\ \not\exist \\ \Omega \\ \phi Ωϕ
mass function: quantify the evidence of the existence.

  • mass functions of the measurement

m a s s z t ( ∃ ) = λ m a s s z t ( ∄ ) = 0 m a s s z t ( ϕ ) = 0 m a s s z t ( Ω ) = 1 − λ mass_{z_t}( \exist ) = \lambda \\ mass_{z_t}( \not \exist ) = 0 \\ mass_{z_t}( \phi ) = 0 \\ mass_{z_t}( \Omega ) = 1-\lambda masszt()=λmasszt()=0masszt(ϕ)=0masszt(Ω)=1λ

  • mass functions of the non-measurement

m a s s z t ( ∃ ) = 0 m a s s z t ( ∄ ) = λ m a s s z t ( ϕ ) = 0 m a s s z t ( Ω ) = 1 − λ mass_{z_t}( \exist ) = 0 \\ mass_{z_t}( \not \exist ) = \lambda \\ mass_{z_t}( \phi ) = 0 \\ mass_{z_t}( \Omega ) = 1-\lambda masszt()=0masszt()=λmasszt(ϕ)=0masszt(Ω)=1λ

Inference of the map feature existence based Dempster Combination Rule

  • mass functions of map features and new map features
    初始化使用第i个地图特征的先验置信度 λ H D \lambda_{HD} λHD

m a s s H D 0 { i } ( ∃ ) = λ H D m a s s H D 0 { i } ( ∄ ) = 0 m a s s H D 0 { i } ( ϕ ) = 0 m a s s H D 0 { i } ( Ω ) = 1 − λ H D mass_{HD_{0\{i\}}}( \exist ) = \lambda_{HD} \\ mass_{HD_{0\{i\}}}( \not \exist ) = 0 \\ mass_{HD_{0\{i\}}}( \phi ) = 0 \\ mass_{HD_{0\{i\}}}( \Omega ) = 1 - \lambda_{HD} massHD0{i}()=λHDmassHD0{i}()=0massHD0{i}(ϕ)=0massHD0{i}(Ω)=1λHD

新增加的第j个地图特征,按下列式初始化
m a s s n e w 0 { j } ( ∃ ) = 0 m a s s n e w 0 { j } ( ∄ ) = 0 m a s s n e w 0 { j } ( ϕ ) = 0 m a s s n e w 0 { j } ( Ω ) = 1 mass_{new_{0\{j\}}}( \exist ) = 0 \\ mass_{new_{0\{j\}}}( \not \exist ) = 0 \\ mass_{new_{0\{j\}}}( \phi ) = 0 \\ mass_{new_{0\{j\}}}( \Omega ) = 1 \\ massnew0{j}()=0massnew0{j}()=0massnew0{j}(ϕ)=0massnew0{j}(Ω)=1

  • Usd Dempster combination rule ⊕ \oplus to accumulate the measurement existence m a s s z t mass_{z_t} massztto the each map feature existence at time t − 1 t-1 t1

m a s s H D t { i } = m a s s H D t − 1 { i } ⊕ m a s s z t m a s s n e w t { j } = m a s s n e w t − 1 { j } ⊕ m a s s z t mass_{HD_{t\{i\}}} = mass_{HD_{t-1\{i\}}}\oplus mass_{z_t} \\ mass_{new_{t\{j\}}} = mass_{new_{t-1\{j\}}}\oplus mass_{z_t} massHDt{i}=massHDt1{i}massztmassnewt{j}=massnewt1{j}masszt

其中,
m a s s 1 ⊕ 2 ( A ) = m a s s 1 ∩ 2 ( A ) 1 − m a s s 1 ∩ 2 ( ϕ ) , ∀ A ⊆ Ω , A ≠ ϕ m a s s 1 ⊕ 2 ( ϕ ) = 0 ∀ A ⊆ Ω , m a s s 1 ∩ 2 ( A ) = ∑ B ∩ C = A ∣ B , C ⊆ Ω m a s s 1 ( B ) m a s s 2 ( C ) mass_{1\oplus2}(A) = \frac{mass_{1\cap2}(A)}{1-mass_{1\cap2}(\phi)}, \forall A\subseteq\Omega,A\neq\phi \\ mass_{1\oplus2}(\phi) = 0 \\ \forall A\subseteq\Omega, mass_{1\cap2}(A) = \sum_{B\cap C=A|B,C\subseteq\Omega}mass_1(B)mass_2(C) mass12(A)=1mass12(ϕ)mass12(A),AΩ,A=ϕmass12(ϕ)=0AΩ,mass12(A)=BC=AB,CΩmass1(B)mass2(C)
注:公式 m a s s 1 ⊕ 2 ( A ) mass_{1\oplus2}(A) mass12(A) m a s s 1 ( A ) ⊕ m a s s 2 ( A ) mass_{1}(A)\oplus mass_2(A) mass1(A)mass2(A)
求和条件中的 ∣ | 为并列含义, Ω \Omega Ω为超集 2 X 2^X 2X
∃ ∩ ∃ = ∃ ∃ ∩ Ω = ∃ ∃ ∩ ∄ = ∅ ∅ ∩ ∃ = ∅ ∅ ∩ ∄ = ∅ ∅ ∩ Ω = ∅ ∅ ∩ ∅ = ∅ \exist \cap \exist = \exist\\ \exist \cap \Omega = \exist\\ \exist \cap \not\exist = \emptyset \\ \emptyset \cap \exist = \emptyset \\ \emptyset \cap \not \exist = \emptyset \\ \emptyset \cap \Omega = \emptyset \\ \emptyset \cap \emptyset = \emptyset \\ =Ω====Ω==
集合运算满足交换律。

http://www.lryc.cn/news/302756.html

相关文章:

  • 通过conda安装cudatoolikit和cudnn
  • vue中使用jsx语法
  • 我的NPI项目之Android USB 系列(一) - 遥望和USB的相识
  • K8s进阶之路-命名空间级-服务发现 :
  • 智慧公厕管理系统:让城市智慧驿站更加智慧舒适
  • 图形渲染基础学习
  • 每日学习总结20240219
  • K8s进阶之路-安装部署K8s
  • springboot集成elk实现日志采集可视化
  • leetcode 148. 排序链表 java解法
  • 【MATLAB源码-第140期】基于matlab的深度学习的两用户NOMA-OFDM系统信道估计仿真,对比LS,MMSE,ML。
  • 运动重定向学习笔记
  • 导出Excel,支持最佳
  • 【WPF】获取父控件数据
  • 解决Edge浏览器,微博无法查看大图(Edge Image Viewer)
  • PMP含金量在国内怎么样?
  • java中容易被忽视的toString()方法
  • 如何使用Docker搭建YesPlayMusic网易云音乐播放器并发布至公网访问
  • java面试题之redis篇
  • effective c++ 笔记 条款18-25
  • Nginx学习笔记
  • 摆(行列式、杜教筛)
  • 尝试以语法对照表格形式学习新语言:c,rust
  • 408计算机网络--基础概论
  • 数据库应用:kylin 部署 达梦数据库DM8
  • GO框架基础 (二)、sqlx库
  • Expected class selector “.menuChildMall“ to be kebab-case报错原因
  • NC文件不规则裁剪(利用shp文件裁剪)(三)
  • java 宠物在线商城系统Myeclipse开发mysql数据库web结构jsp编程servlet计算机网页项目
  • 三防平板丨手持工业平板丨ONERugged工业三防平板丨推动数字化转型