当前位置: 首页 > news >正文

Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度

概述

Diffusion 模型在生成图像时最大的瓶颈是速度过慢的问题。为了解决这个问题,Stable Diffusion 采用了多种方式来加速图像生成,使得实时图像生成成为可能。最核心的加速是Stable Diffusion 使用了编码器将图像从原始的 3512512 大小转换为更小的 46464 大小,从而极大地降低了计算量。它还利用了潜在表示空间(latent space)上的 Diffusion 过程,进一步降低了计算复杂度,同时也能保证较好的图像生成效果。在 消费级GPU 上(8G显存),Stable Diffusion 要生成一张描述复杂图像大概需要 4 秒时间。

然而,对于许多面向消费者的应用来说,每张图像生成需要 4 秒的耗时仍然过长。这时候,TensorRT 就发挥了重要作用。TensorRT 是英伟达(NVIDIA)推出的高性能深度学习推理(inference)库,旨在优化和加速深度学习模型的推理过程。它能够将训练好的深度学习模型优化并部署到 NVIDIA GPU 上,实现实时推理任务的高效执行。TensorRT 的设计目标是提高推理性能、减少延迟和资源消耗,并支持在边缘设备上运行。

TensorRT 提供了许多优化技术,包括网络层融合(layer fusion)、内存优化、精度降级(precision calibration)、量化(quantization)和深度学习模型的裁剪(network pruning)。通过这些技术,TensorRT 可以最大限度地利用 GPU 的并行计算能力,实现深度学习模型的高效执行。

2023年10月18日 Nvidia终于推出了官方的TensorRT插件Stable-Diffusion-WebUI-TensorRT,该插件可以直接在 webui 的 extension 中安装即可,默认支持cuda11.x。

环境配置要求

要使用Stable-Diffusion-WebUI-TensorRT插件加速,有几个重要的前提条件,GPU必须是NVIDIA的(俗称N卡),GPU的显存必须在8G以上,包含8G,GPU驱动版本大于等于537.58,如果电脑没有别的深度学习模型要训练,建议驱动更新到最新的版本。物理内存大于等于16G。
支持Stable-Diffusion1.5,2.1,SDXL,SDXL Turbo 和 LCM。对于 SDXL 和 SDXL Turbo,官方推荐使用具有12GB 或更多 VRAM 的 GPU,以获得最佳性能。

在这里插入图片描述
查看GPU驱动版本:
在这里插入图片描述
查看内存与显卡型号:
在这里插入图片描述

我使用的环境是win10,GPU 3080 10G显存,32G内存,Stable Diffusion用的是秋叶大佬的4.5这个版本。

Stable-Diffusion-WebUI-TensorRT安装

1.安装

启动Stable-Diffusion-WebUI,找到扩展,然后从网址安装TensorRT插件:
插件网址:https://github.com/NVIDIA/Stable-Diffusion-WebUI-TensorRT.git在这里插入图片描述
点击安装:
在这里插入图片描述
等侍2到10分钟,安装完成:
在这里插入图片描述

然后重启Stable-Diffusion-WebUI,就可以看到:
在这里插入图片描述
在这里插入图片描述

2.设置

打开设置——>用户界面——>快捷设置列表——>输入"sd_unet",然后保存设置,重载UI:
在这里插入图片描述
重启之后就可以看到多了一个SD Unet的选框了:
在这里插入图片描述

3.模型转换

选择要使用的模型,然后打开TensorRT——>TensorRT导出——>选择预设尺寸——>导出引擎:
在这里插入图片描述
关于导出尺寸,这是要设置不用尺寸,但尺寸大小只能是2的幕,这里面导出的模型为onnx模型,如果接触过深度学习的都清楚这个尺寸的含义。

4. 测试推理速度

使用TensorRT推理时,选择的模型与SD Unet要对应,出图的宽度与高度,也要对应上一步导出的模型的尺寸:
在这里插入图片描述

测试出图速度,使用TensorRT出图时,第一张图会很慢,要计算时间可以从第二张开始算,下面出图尺寸是1024*1024:

使用TensorRT推理:
在这里插入图片描述
不使用TensorRT推理,可以看出慢了2点几秒,差不多3秒:
在这里插入图片描述

使用TensorRT推理(出图尺寸512*512):
在这里插入图片描述

不使用TensorRT推理(出图尺寸512*512),可以看出,不使用TensorRT差不多要慢上一倍左右:
在这里插入图片描述

http://www.lryc.cn/news/302044.html

相关文章:

  • NFTScan | 02.12~02.18 NFT 市场热点汇总
  • 使用 apt 源安装 ROCm 6.0.x 在Ubuntu 22.04.01
  • python函数的定义和调用
  • 【JVM篇】什么是类加载器,有哪些常见的类加载器
  • STM32—DHT11温湿度传感器
  • 相机图像质量研究(31)常见问题总结:图像处理对成像的影响--图像差
  • MySQL之select查询
  • Android MMKV 接入+ 替换原生 SP + 原生 SP 数据迁移
  • C#上位机与三菱PLC的通信07--使用第3方通讯库读写数据
  • LiveGBS流媒体平台GB/T28181常见问题-基础配置流媒体服务配置中本地|内网IP外网IP(可选)外网IP收流如何配置
  • 微服务- 熔断、降级和限流
  • 电路设计(20)——数字电子钟的multism仿真
  • 【论文阅读笔记】Contrastive Learning with Stronger Augmentations
  • 前端win10如何设置固定ip(简单明了)
  • 数据结构1.0(基础)
  • anomalib1.0学习纪实-续2:三个文件夹
  • 【递归】【后续遍历】【迭代】【队列】Leetcode 101 对称二叉树
  • Nginx https反向代理
  • zip解压缩
  • 电动五金工具行业调研:政策促进市场发展
  • 【矩阵】托普利茨矩阵
  • DS:八大排序之归并排序、计数排序
  • 由斐波那契数列探究递推与递归
  • 红队打靶练习:IMF: 1
  • 密码管理局以及什么是密评?为什么要做密评(商用密码应用安全性评估)?
  • 六、Datax通过json字符串运行
  • 关于数据库
  • 洛谷C++简单题小练习day14—闰年推算小程序
  • 房企关注的典型数字化场景之一:数字营销
  • BMS再进阶(新能源汽车电池管理系统)