当前位置: 首页 > news >正文

最大子序和+旅行问题——单调队列

一、最大子序和

输入一个长度为 n 的整数序列,从中找出一段长度不超过 m 的连续子序列,使得子序列中所有数的和最大。
注意: 子序列的长度至少是 1。

输入
第一行输入两个整数 n,m (1 ≤ n,m ≤ 300000)。
第二行输入 n 个数,代表长度为 n 的整数序列。
同一行数之间用空格隔开。

输出
输出一个整数,代表该序列的最大子序和。

Input
6 4
1 -3 5 1 -2 3

Output
7

解析:
在长度不超过m的连续子序列,找到和最大的连续子序列。
集合按照终点的不同划分,划分成 n 个子集,答案就是不同子集的最大值。
假如,终点是 k 的连续子序列,它的最大和就是 max({a[k],a[k]+a[k-1],a[k]+a[k-1]+a[k-2],……,a[k]+…a[k-m+1]});
可以发现就是 s[k]-s[k-j] 的最大值,(其中1≤j≤m,s[N]是前缀和);
又因为终点 k 是确定不动的,这道题就转化成求在区间长度不超过 m 的 s[k-j]的最小值,典型的滑动窗口问题。 

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=2e6+10;
int n,m;
int s[N];
int q[N];
void solve()
{cin>>n>>m;for (int i=1;i<=n;i++) cin>>s[i],s[i] +=s[i-1];int hh=0,tt=1;                                  //最开始队列不空,有s[0]int ans=s[1];for (int i=1;i<=n;i++){if (hh<=tt&&i-q[hh]>m) hh++;ans=max(ans,s[i]-s[q[hh]]);                 //比较每个子集,更新答案while (hh<=tt&&s[q[tt]]>=s[i]) tt--;q[++tt]=i;}cout<<ans;
}
signed main()
{ios;int T=1;//cin>>T;while (T--) solve();return 0;
}

二、 旅行问题

John 打算驾驶一辆汽车周游一个环形公路。
公路上总共有 n 个车站,每站都有若干升汽油(有的站可能油量为零),每升油可以让汽车行驶一千米。
John 必须从某个车站出发,一直按顺时针(或逆时针)方向走遍所有的车站,并回到起点。
在一开始的时候,汽车内油量为零,John 每到一个车站就把该站所有的油都带上(起点站亦是如此),行驶过程中不能出现没有油的情况。
任务:判断以每个车站为起点能否按条件成功周游一周。

输入
第一行是一个整数 n (3 ≤ n ≤ 1e6),表示环形公路上的车站数;
接下来 n 行,每行两个整数 pi,di (0 ≤ pi ≤ 2e9,0 ≤ di ≤ 2e9),分别表示表示第 i 号车站的存油量和第 i 号车站到 顺时针方向 下一站的距离。

输出
输出共 n 行,如果从第 i 号车站出发,一直按顺时针(或逆时针)方向行驶,能够成功周游一圈,则在第 i 行输出 TAK,否则输出 NIE。

Input
5
3 1
1 2
5 2
0 1
5 4

Output
TAK
NIE
TAK
NIE
TAK

 

解析:
破链成环,可以根据顺时针和逆时针分开求;
下面先考虑顺时针的情况:
开一个数组存储的是 当前点的油量*100-到下一点的距离的前缀和 ;
而我们判断的是 当前点绕一圈,能否到达每一个点,就等价于 从当前点开始,到最后,每一个点的前缀和是否都大于 0 ;
而判断每个点的前缀和是否都大于0,就等价于判断最小值是否大于 0 ;
综上所述,就转化为求以每个点为起点,求在长度不超过 n 的数组的最小值是否大于0,即 区间[i,i+n-1]的最小值是否大于0,又转化成经典的滑动窗口问题!!!
(为什么要判断每个点的前缀和大于0?  如果能从起点到达当前点,那一定是之前每个站点的油量*1000之和-到达之前点的每段距离大于0,恰好就是这个新开数组能表达这种关系)

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=2e6+10;
int n;
int o[N],d[N];
int s[N];
int q[N];
bool vis[N];
void solve()
{cin>>n;for (int i=1;i<=n;i++) cin>>o[i]>>d[i];for (int i=1;i<=n;i++) s[i+n]=s[i]=o[i]-d[i];for (int i=1;i<=2*n;i++) s[i] +=s[i-1];int hh=0,tt=0;q[0]=2*n+1;for (int i=2*n;i>=0;i--){if (hh<=tt&&q[hh]>i+n) hh++;if (i<n){if(s[q[hh]]-s[i]>=0) vis[i+1]=1;}while (hh<=tt&&s[q[tt]]>=s[i]) tt--;q[++tt]=i;}d[0]=d[n];for (int i=1;i<=n;i++) s[i+n]=s[i]=o[i]-d[i-1];for (int i=1;i<=2*n;i++) s[i] +=s[i-1];hh=0,tt=0;q[0]=0;for (int i=1;i<=2*n;i++){if (hh<=tt&&q[hh]<i-n) hh++;if (i>n){if (s[i]-s[q[hh]]>=0) vis[i-n]=1;}while (hh<=tt&&s[q[tt]]<=s[i]) tt--;q[++tt]=i;}for (int i=1;i<=n;i++){if (vis[i]) cout<<"TAK\n";else cout<<"NIE\n";}
}
signed main()
{ios;int T=1;//cin>>T;while (T--) solve();return 0;
}

http://www.lryc.cn/news/301442.html

相关文章:

  • Unity设备分级策略
  • 自己在开发AI应用的过程总结的 Prompt - 持续更新
  • STM32——OLED菜单
  • Open CASCADE学习|布尔运算后消除内部拓扑
  • 【数据仓库】主题域和数据域
  • C#,二分法(Bisection Method)求解方程的算法与源代码
  • Portainer安装/快速上手
  • 恢复被.target勒索病毒加密的数据文件:拒绝向.target勒索病毒支付赎金
  • 【Linux网络编程六】服务器守护进程化Daemon
  • MySQL之json数据操作
  • 【大厂AI课学习笔记】【2.1 人工智能项目开发规划与目标】(5)数据管理
  • Linux满载CPU和运行内存的方法
  • 每日五道java面试题之java基础篇(九)
  • spring @Transactional注解参数详解
  • D - 串结构练习——字符串连接
  • 什么样的服务器是高性能服务器?
  • 数学建模【线性规划】
  • ChatGPT的大致原理
  • 蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记
  • 轮播图的五种写法(原生、vue2、vue3、react类组件,react函数组件)
  • 【MySQL】高度为2和3时B+树能够存储的记录数量的计算过程
  • 软件著作书 60页代码轻松搞定!(附exe和代码)
  • 阿里文档类图像的智能识别,文档分类自定义分类器
  • 256.【华为OD机试真题】会议室占用时间(区间合并算法-JavaPythonC++JS实现)
  • 人工智能学习与实训笔记(三):神经网络之目标检测问题
  • SSM框架,Spring-ioc的学习(下)
  • 【AIGC】Stable Diffusion的模型微调
  • VNCTF 2024 Web方向 WP
  • 第11章 GUI
  • 综合项目---博客