当前位置: 首页 > news >正文

【记录】个人博客或笔记中的数学符号设定

note

  • 这里记录个人博客中常用的数学符号数学格式和对应含义

文章目录

  • note
  • 数与数组
  • 索引
  • 集合
  • 线性代数
  • 微积分
  • 概率和信息论
  • 数据与概率分布
  • 函数
  • 深度学习中的常用数学表达方式

数与数组

α 标量  α 向量  A 矩阵  A 张量  I n n 行  n 列单位矩阵  v w 单词  w 的分布式向量表示  e w 单词  w 的独热向量表示:  [ 0 , 0 , … , 1 , 0 , … 0 ] , w 下标处元素为  1 \begin{array}{ll} \boldsymbol{\alpha} & \text { 标量 } \\ \boldsymbol{\alpha} & \text { 向量 } \\ \boldsymbol{A} & \text { 矩阵 } \\ \mathbf{A} & \text { 张量 } \\ \boldsymbol{I}_n & n \text { 行 } n \text { 列单位矩阵 } \\ \boldsymbol{v}_w & \text { 单词 } w \text { 的分布式向量表示 } \\ \boldsymbol{e}_w & \text { 单词 } w \text { 的独热向量表示: }[0,0, \ldots, 1,0, \ldots 0], w \text { 下标处元素为 } 1 \end{array} ααAAInvwew 标量  向量  矩阵  张量 n  n 列单位矩阵  单词 w 的分布式向量表示  单词 w 的独热向量表示[0,0,,1,0,0],w 下标处元素为 1

索引

α i 向量  α 中索引  i 处的元素  α − i 向量  α 中除索引  i 之外的元素  w i : j 序列  w 中从第  i 个元素到第  j 个元素组成的片段或子序列  A i j 矩阵  A 中第  i 行、第  j 列处的元素  A i : 矩阵  A 中第  i 行  A : j 矩阵  A 中第  j 列  A i j k 三维张量  A 中索引为  ( i , j , k ) 处元素  A : : i 三维张量  A 中的一个二维切片  \begin{array}{ll} \alpha_i & \text { 向量 } \boldsymbol{\alpha} \text { 中索引 } i \text { 处的元素 } \\ \alpha_{-i} & \text { 向量 } \boldsymbol{\alpha} \text { 中除索引 } i \text { 之外的元素 } \\ w_{i: j} & \text { 序列 } w \text { 中从第 } i \text { 个元素到第 } j \text { 个元素组成的片段或子序列 } \\ A_{i j} & \text { 矩阵 } \boldsymbol{A} \text { 中第 } i \text { 行、第 } j \text { 列处的元素 } \\ \boldsymbol{A}_{i:} & \text { 矩阵 } \boldsymbol{A} \text { 中第 } i \text { 行 } \\ \boldsymbol{A}_{: j} & \text { 矩阵 } \boldsymbol{A} \text { 中第 } j \text { 列 } \\ A_{i j k} & \text { 三维张量 } \mathbf{A} \text { 中索引为 }(i, j, k) \text { 处元素 } \\ \mathbf{A}_{:: i} & \text { 三维张量 } \mathbf{A} \text { 中的一个二维切片 } \end{array} αiαiwi:jAijAi:A:jAijkA::i 向量 α 中索引 i 处的元素  向量 α 中除索引 i 之外的元素  序列 w 中从第 i 个元素到第 j 个元素组成的片段或子序列  矩阵 A 中第 i 行、第 j 列处的元素  矩阵 A 中第 i   矩阵 A 中第 j   三维张量 A 中索引为 (i,j,k) 处元素  三维张量 A 中的一个二维切片 

集合

A 集合  R 实数集  C 复数集  { 0 , 1 , … , n } 含  0 和  n 的正整数的集合  [ a , b ] a 到  b 的实数闭区间  ( a , b ] a 到  b 的实数左开右闭区间  \begin{array}{ll} \mathbb{A} & \text { 集合 } \\ \mathbb{R} & \text { 实数集 } \\ \mathbb{C} & \text { 复数集 } \\ \{0,1, \ldots, n\} & \text { 含 } 0 \text { 和 } n \text { 的正整数的集合 } \\ {[a, b]} & a \text { 到 } b \text { 的实数闭区间 } \\ (a, b] & a \text { 到 } b \text { 的实数左开右闭区间 } \end{array} ARC{0,1,,n}[a,b](a,b] 集合  实数集  复数集   0  n 的正整数的集合 a  b 的实数闭区间 a  b 的实数左开右闭区间 

线性代数

A ⊤ 矩阵  A 的转置  A ⊙ B 矩阵  A 与矩阵  B 的 Hadamard 乘积  det ⁡ ( A ) 矩阵  A 的行列式  [ x ; y ] 向量  x 与  y 的拼接  [ U ; V ] 矩阵  A 与  V 沿行向量拼接  x ⋅ y 或  x ⊤ y 向量  x 与  y 的点积  \begin{array}{ll} \boldsymbol{A}^{\top} & \text { 矩阵 } \boldsymbol{A} \text { 的转置 } \\ \boldsymbol{A} \odot \boldsymbol{B} & \text { 矩阵 } \boldsymbol{A} \text { 与矩阵 } \boldsymbol{B} \text { 的 Hadamard 乘积 } \\ \operatorname{det}(\boldsymbol{A}) & \text { 矩阵 } \boldsymbol{A} \text { 的行列式 } \\ {[\boldsymbol{x} ; \boldsymbol{y}]} & \text { 向量 } \boldsymbol{x} \text { 与 } \boldsymbol{y} \text { 的拼接 } \\ {[\boldsymbol{U} ; \boldsymbol{V}]} & \text { 矩阵 } \boldsymbol{A} \text { 与 } \boldsymbol{V} \text { 沿行向量拼接 } \\ \boldsymbol{x} \cdot \boldsymbol{y} \text { 或 } \boldsymbol{x}^{\top} \boldsymbol{y} & \text { 向量 } \boldsymbol{x} \text { 与 } \boldsymbol{y} \text { 的点积 } \end{array} AABdet(A)[x;y][U;V]xy  xy 矩阵 A 的转置  矩阵 A 与矩阵 B  Hadamard 乘积  矩阵 A 的行列式  向量 x  y 的拼接  矩阵 A  V 沿行向量拼接  向量 x  y 的点积 

微积分

d y d x y 对  x 的导数  ∂ y ∂ x y 对  x 的偏导数  ∇ x y y 对向量  x 的梯度  ∇ x y y 对矩阵  X 的梯度  ∇ x y y 对张量  X 的梯度  \begin{array}{ll} \frac{\mathrm{d} y}{\mathrm{~d} x} & y \text { 对 } x \text { 的导数 } \\ \frac{\partial y}{\partial x} & y \text { 对 } x \text { 的偏导数 } \\ \nabla \boldsymbol{x} y & y \text { 对向量 } \boldsymbol{x} \text { 的梯度 } \\ \nabla \boldsymbol{x} y & y \text { 对矩阵 } \boldsymbol{X} \text { 的梯度 } \\ \nabla \mathbf{x} y & y \text { 对张量 } \mathbf{X} \text { 的梯度 } \end{array}  dxdyxyxyxyxyy  x 的导数 y  x 的偏导数 y 对向量 x 的梯度 y 对矩阵 X 的梯度 y 对张量 X 的梯度 

概率和信息论

a ⊥ b 随机变量  a 与  b 独立  a ⊥ b ∣ c 随机变量  a 与  b 关于  c 条件独立  P ( a ) 离散变量概率分布  p ( a ) 连续变量概率分布  a ∼ P 随机变量  a 服从分布  P E x ∼ P ( f ( x ) ) 或  f ( x ) 在分布  P ( x ) 下的期望  E ( f ( x ) ) Var ⁡ ( f ( x ) ) f ( x ) 在分布  P ( x ) 下的方差  Cov ⁡ ( f ( x ) , g ( x ) ) f ( x ) 与  g ( x ) 在分布  P ( x ) 下的协方差  H ( f ( x ) ) 随机变量  x 的信息熵  D K L ( P ∥ Q ) 概率分布  P 与  Q 的  K L 散度  N ( μ , Σ ) 均值为  μ 、协方差为  Σ 的高斯分布  \begin{array}{ll} a \perp b & \text { 随机变量 } a \text { 与 } b \text { 独立 } \\ a \perp b \mid c & \text { 随机变量 } a \text { 与 } b \text { 关于 } c \text { 条件独立 } \\ P(a) & \text { 离散变量概率分布 } \\ p(a) & \text { 连续变量概率分布 } \\ a \sim P & \text { 随机变量 } a \text { 服从分布 } P \\ \mathbb{E}_{x \sim P}(f(x)) \text { 或 } & f(x) \text { 在分布 } P(x) \text { 下的期望 } \\ \mathbb{E}(f(x)) & \\ \operatorname{Var}(f(x)) & f(x) \text { 在分布 } P(x) \text { 下的方差 } \\ \operatorname{Cov}(f(x), g(x)) & f(x) \text { 与 } g(x) \text { 在分布 } P(x) \text { 下的协方差 } \\ H(f(x)) & \text { 随机变量 } x \text { 的信息熵 } \\ D_{K L}(P \| Q) & \text { 概率分布 } P \text { 与 } Q \text { 的 } \mathrm{KL} \text { 散度 } \\ \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) & \text { 均值为 } \boldsymbol{\mu} \text { 、协方差为 } \boldsymbol{\Sigma} \text { 的高斯分布 } \end{array} ababcP(a)p(a)aPExP(f(x))  E(f(x))Var(f(x))Cov(f(x),g(x))H(f(x))DKL(PQ)N(μ,Σ) 随机变量 a  b 独立  随机变量 a  b 关于 c 条件独立  离散变量概率分布  连续变量概率分布  随机变量 a 服从分布 Pf(x) 在分布 P(x) 下的期望 f(x) 在分布 P(x) 下的方差 f(x)  g(x) 在分布 P(x) 下的协方差  随机变量 x 的信息熵  概率分布 P  Q  KL 散度  均值为 μ 、协方差为 Σ 的高斯分布 

数据与概率分布

X 或  D 数据集  x ( i ) 数据集中第  i 个样本(输入)  y ( i ) 或  y ( i ) 第  i 个样本  x ( i ) 的标签(输出)  \begin{array}{ll} \mathbb{X} \text { 或 } \mathbb{D} & \text { 数据集 } \\ \boldsymbol{x}^{(i)} & \text { 数据集中第 } i \text { 个样本(输入) } \\ \boldsymbol{y}^{(i)} \text { 或 } y^{(i)} & \text { 第 } i \text { 个样本 } \boldsymbol{x}^{(i)} \text { 的标签(输出) } \end{array} X  Dx(i)y(i)  y(i) 数据集  数据集中第 i 个样本(输入)   i 个样本 x(i) 的标签(输出) 

函数

f : A ⟶ B 由定义域  A 到值域  B 的函数(映射)  f f ∘ g f 与  g 的复合函数  f ( x ; θ ) 由参数  θ 定义的关于  x 的函数(也可以直接写作  f ( x ) , 省略  θ ) log ⁡ x x 的自然对数函数  σ ( x ) Sigmoid 函数  1 1 + exp ⁡ ( − x ) ∥ x ∥ p x 的  L p 范数  ∥ x ∥ x 的  L 2 范数  1 condition  条件指示函数:如果 condition 为真, 则值为  1 ; 否则值为  0 \begin{array}{ll} f: \mathcal{A} \longrightarrow \mathcal{B} & \text { 由定义域 } \mathcal{A} \text { 到值域 } \mathcal{B} \text { 的函数(映射) } f \\ f \circ g & f \text { 与 } g \text { 的复合函数 } \\ f(\boldsymbol{x} ; \boldsymbol{\theta}) & \text { 由参数 } \boldsymbol{\theta} \text { 定义的关于 } \boldsymbol{x} \text { 的函数(也可以直接写作 } f(\boldsymbol{x}), \text { 省略 } \boldsymbol{\theta}) \\ \log x & x \text { 的自然对数函数 } \\ \sigma(x) & \text { Sigmoid 函数 } \frac{1}{1+\exp (-x)} \\ \|\boldsymbol{x}\|_p & \boldsymbol{x} \text { 的 } L^p \text { 范数 } \\ \|\boldsymbol{x}\| & \boldsymbol{x} \text { 的 } L^2 \text { 范数 } \\ \mathbf{1}^{\text {condition }} & \text { 条件指示函数:如果 condition 为真, 则值为 } 1 \text {; 否则值为 } 0 \end{array} f:ABfgf(x;θ)logxσ(x)xpx1condition  由定义域 A 到值域 B 的函数(映射) ff  g 的复合函数  由参数 θ 定义的关于 x 的函数(也可以直接写作 f(x), 省略 θ)x 的自然对数函数  Sigmoid 函数 1+exp(x)1x  Lp 范数 x  L2 范数  条件指示函数:如果 condition 为真则值为 1否则值为 0

深度学习中的常用数学表达方式

  • 给定词表 V \mathbb{V} V, 其大小为 ∣ V ∣ |\mathbb{V}| V
  • 序列 x = x 1 , x 2 , … , x n x=x_1, x_2, \ldots, x_n x=x1,x2,,xn 中第 i i i 个单词 x i x_i xi 的词向量 v x i \boldsymbol{v}_{x_i} vxi
  • 损失函数 L \mathcal{L} L 为负对数似然函数: L ( θ ) = − ∑ ( x , y ) log ⁡ P ( y ∣ x 1 … x n ) \mathcal{L}(\boldsymbol{\theta})=-\sum_{(x, y)} \log P\left(y \mid x_1 \ldots x_n\right) L(θ)=(x,y)logP(yx1xn)
  • 算法的空间复杂度为 O ( m n ) \mathcal{O}(m n) O(mn)
http://www.lryc.cn/news/301332.html

相关文章:

  • Redis Sentinel工作原理
  • GEE入门篇|遥感专业术语:理论介绍
  • react中如何做到中断diff过程和恢复
  • python:PyPDF2 从PDF文件中提取目录
  • Java 2:运算符、表达式和语句
  • 批量提取word文件中文本框内容的三种方法
  • Leecode之合并两个有序链表
  • 陶建国教授谈中西方文化的差异与交融
  • Ps:画笔选项
  • 嵌入式——Flash(W25Q64)
  • stm32:pwm output模块,记录一下我是用smt32,输出pwm波的记录--(实现--重要)
  • phpstrom创建thinkphp项目
  • 【Linux】线程同步
  • 如何在多头自注意力机制的交叉学习中引入对于物理、生理、心理世界客观规律的对照验证...
  • 智慧公厕:让智慧城市的公共厕所焕发“智慧活力”
  • vue导出word文档(图文示例)
  • 【C Primer Plus第六版 学习笔记】 第十七章 高级数据表示
  • 租用一个服务器需要多少钱?2024阿里云新版报价
  • python-产品篇-游戏-成语填填乐
  • 数据库数据加密的 4 种常见思路的对比
  • HCIA-HarmonyOS设备开发认证V2.0-IOT硬件子系统-PWM
  • 001kafka源码项目gradle报错UnsupportedClassVersionError-kafka-报错-大数据学习
  • 单片机学习笔记---直流电机驱动(PWM)
  • Scrum敏捷培训机构推荐
  • 《Go 简易速速上手小册》第5章:并发编程(2024 最新版)
  • python - 模块
  • 【Web】CTFSHOW java刷题记录(全)
  • 全球付汇业务的流程
  • ubuntu22.04@laptop OpenCV Get Started: 012_mouse_and_trackbar
  • 信息安全性测试