当前位置: 首页 > news >正文

数据工程工程师学习路线图

数据工程岗位要求

Skill Sets required:

- Hands on experience enabling data via Adobe Analytics and/or Google Analytics

- Understanding of how customer level data is captured and stitched with behavioural data

- Experience working with Testing (QA) and Development teams, help them understand the tagging spec; able to guide as needed

- Experience working within an environment that uses tag management tools e.g. Tealium/ GTM/ ATM

- Excellent problem solving abilities

*Good to have:*

- Experience in enabling analytics tagging for mobile apps

- Programming and web development with HTML, SQL, CSS and JavaScript/jQuery

- Knowledge of Digital Marketing / online acquisition channels and attribution

- Scripting and automation withPython, R, Google Scripts etc

- Super high attention to detail as you will be responsible for ensuring 100% data accuracy

*What you will be doing:*

- Be accountable for the integrity of data collection for both behavioural and customer level data

- Gathering requirements from stakeholder groups and creating tagging spec/data layer specifications

- Ensure testing team validates data flow and participate in UAT process to provide signoff

- Build QA and production reports within Adobe Analytics or other visualisation tools to allow product teams monitor tagged deployment status and performance

- Build strong working relationships with multiple teams (Analytics, Tagging, Testing, Developers, Product teams)

*What you will bring to the role:*

- Strong understanding of digital analytics space includingweb analytics and clickstream data

- Strong troubleshooting abilities for data capture and digital analytics implementation at a granular level

- Able to work independently with guidance from remote teams

- Excellent communication skills. Be able to understand the background of the audience and be able to communicate the message in an effective manner

数据工程师学习内容

  • Foundational data warehousing concepts and fundamentals
  • The symbiotic relationship between data warehousing and business intelligence
  • How data warehousing co-exists with data lakes and data virtualization
  • Your many architectural alternatives, from highly centralized approaches to numerous multi-component alternatives
  • The fundamentals of dimensional analysis and modeling
  • The key relational database capabilities that you will put to work to build your dimensional data models
  • Different alternatives for handling changing data history within your environment, and how to decide which approaches to apply in various situations
  • How to organize and design your Extraction, Transformation, and Loading (ETL) capabilities to keep your data warehouse up to date

数据工程技术栈

在这里插入图片描述

补充:python/维度建模数仓/kafka/tdd/ETL工具/data pipeline/数据迁移、设计迁移、代码迁移/数据抓取/ftp获取文件数据解析入数仓

在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/299032.html

相关文章:

  • MySQL主从同步与分库分表
  • 百度PaddleOCR字符识别推理部署(C++)
  • C++ Qt框架开发 | 基于Qt框架开发实时成绩显示排序系统(2)折线图显示
  • Microsoft Excel 加载数据分析工具
  • Day32 贪心算法part02
  • 3分钟带你了解Vue3的nextTick()
  • 数据库的使用方法
  • HTML5和CSS3强化知识总结
  • 华为机考入门python3--(13)牛客13-句子逆序
  • javaScript实现客户端直连AWS S3(亚马逊云)文件上传、断点续传、断网重传
  • 从基建发力,CESS 如何推动 RWA 发展?
  • qml写一个自适应登录框
  • 考研高数(导数的定义)
  • ChatGPT在国际中文教育领域引起的变革与挑战
  • C语言—基础数据类型(含进制转换)
  • 警钟长鸣-合同问题
  • CAN通讯协议学习
  • Spring Boot 笔记 008 创建接口_获取用户信息
  • EMC学习笔记(二十六)降低EMI的PCB设计指南(六)
  • pytorch花式索引提取topk的张量
  • Swagger2
  • 2024/2/13
  • 【工具】Android|Android Studio 长颈鹿版本安装下载使用详解
  • 第三代互联网web3.0
  • FL Studio版本升级-FL Studio怎么升级-FL Studio升级方案
  • 服务降级(Sentinel)
  • Rust入门问题: use of undeclared crate or module `rand`
  • 2024.2.6 模拟实现 RabbitMQ —— 数据库操作
  • dolphinscheduler海豚调度(一)简介快速体验
  • VTK 三维场景的基本要素(相机) vtkCamera