当前位置: 首页 > news >正文

R语言:箱线图绘制(添加平均值趋势线)

箱线图绘制

  • 1. 写在前面
  • 2.箱线图绘制
    • 2.1 相关R包导入
    • 2.2 数据导入及格式转换
    • 2.3 ggplot绘图

1. 写在前面

  今天有时间把之前使用过的一些代码和大家分享,其中箱线图绘制我认为是非常有用的一个部分。之前我是比较喜欢使用origin进行绘图,但是绘制的图不太好看,并且需要进行不断调整,不太方便,所以开始使用R语言进行绘制。

2.箱线图绘制

2.1 相关R包导入

library(openxlsx)
library(tidyverse)
library(ggsignif)
library(ggpubr)
library(RColorBrewer)
library(ggplot2)

2.2 数据导入及格式转换

  由于使用ggplot2进行绘图需要将原本的表格数据进行转换,一下为数据导入和转换方法:
数据格式:
在这里插入图片描述

在这里插入图片描述

setwd("C:/Users/Desktop/Practice/")
dataT1 <- read.xlsx("T1.xlsx", sheet = 1) # 文件名+sheet的序号
dataS1 <- read.xlsx("S1.xlsx", sheet = 1) # 文件名+sheet的序号
summary(dataT1)
head(dataT1)
summary(dataS1)
head(dataS1)#使用tidyverse包对数据进行处理
dataT1 <- dataT1 %>% gather(key = 'group',value = 'values') %>%  #gather()函数可以把多列数据合并成一列数据filter(!is.na(values)) 
head(dataT1) 
summary(dataT1)dataS1 <- dataS1 %>% gather(key = 'group',value = 'values') %>%  #gather()函数可以把多列数据合并成一列数据filter(!is.na(values)) 
head(dataS1) 
summary(dataS1)dataT1$group<-factor(dataT1$group,levels = c("2dm","4dm","6dm","8dm","10dm"))
dataS1$group<-factor(dataS1$group,levels = c("2dm","4dm","6dm","8dm","10dm"))

数据转换格式:

> head(dataT1)group values
1   2dm 0.8640
2   2dm 0.8500
3   2dm 0.8680
4   2dm 0.8850
5   2dm 0.8870
6   2dm 0.8951
> head(dataS1)group values
1   2dm  0.619
2   2dm  0.610
3   2dm  0.632
4   2dm  0.700
5   2dm  0.679
6   2dm  0.711

2.3 ggplot绘图

(p1 <- ggplot(data = dataT1, aes(x = group, y = values)) +stat_boxplot(geom = "errorbar", width = 0.3, size = 0.8, aes(color = group)) +geom_boxplot(aes(x = group, y = values, colour = group), size = 1.0, width = 0.6) +geom_jitter(mapping = aes(x = group, y = values, colour = group), size = 1.5, alpha = 0.3) +stat_summary(fun = "mean", geom = "point", color = "black", size = 2) +stat_summary(fun = "mean", geom = "line", aes(group = 1), color = "black", size = 1) +scale_color_manual(limits = c("2dm","4dm","6dm","8dm","10dm"), values = c("#8dd3c7", "#fdb462", "#bebada", "#fb8072", "#80b1d3")) +theme_classic(base_line_size = 1) +labs(x = "空间分割等级", y = "Kappa") +theme(text = element_text(size = 16, family = "serif"),axis.ticks.length = unit(0.2, "cm"),  # 设置刻度线的长度axis.ticks = element_line(size = 1),  # 设置刻度线的粗细legend.position = "none",plot.title = element_text(size = 16, colour = "black", hjust = 0.5),axis.title.y = element_text(size = 16, color = "black", vjust = 1.9, hjust = 0.5, angle = 90),legend.title = element_text(color = "black", size = 16),legend.text = element_text(color = "black", size = 16),axis.text.x = element_text(size = 16, color = "black", vjust = 0.5, hjust = 0.5, angle = 0),axis.text.y = element_text(size = 16, color = "black", vjust = 0.5, hjust = 0.5, angle = 0),panel.border = element_rect(color = "black", size = 1, fill = NA),panel.grid.major = element_blank(),panel.grid.minor = element_blank(),axis.line = element_line(colour = "black", size = 2),axis.line.x = element_line(colour = "black", size = 0),axis.line.y = element_line(colour = "black", size = 0))
)(p2 <- ggplot(data = dataS1, aes(x = group, y = values)) +stat_boxplot(geom = "errorbar", width = 0.3, size = 0.8, aes(color = group)) +geom_boxplot(aes(x = group, y = values, colour = group), size = 1.0, width = 0.6) +geom_jitter(mapping = aes(x = group, y = values, colour = group), size = 1.5, alpha = 0.3) +stat_summary(fun = "mean", geom = "point", color = "black", size = 2) +stat_summary(fun = "mean", geom = "line", aes(group = 1), color = "black", size = 1) +scale_color_manual(limits = c("2dm","4dm","6dm","8dm","10dm"), values = c("#8dd3c7", "#fdb462", "#bebada", "#fb8072", "#80b1d3")) +theme_classic(base_line_size = 1) +labs(x = "空间分割等级", y = "Kappa") +theme(text = element_text(size = 16, family = "serif"),axis.ticks.length = unit(0.2, "cm"),  # 设置刻度线的长度axis.ticks = element_line(size = 1),  # 设置刻度线的粗细legend.position = "none",plot.title = element_text(size = 16, colour = "black", hjust = 0.5),axis.title.y = element_text(size = 16, color = "black", vjust = 1.9, hjust = 0.5, angle = 90),legend.title = element_text(color = "black", size = 16),legend.text = element_text(color = "black", size = 16),axis.text.x = element_text(size = 16, color = "black", vjust = 0.5, hjust = 0.5, angle = 0),axis.text.y = element_text(size = 16, color = "black", vjust = 0.5, hjust = 0.5, angle = 0),panel.border = element_rect(color = "black", size = 1, fill = NA),panel.grid.major = element_blank(),panel.grid.minor = element_blank(),axis.line = element_line(colour = "black", size = 2),axis.line.x = element_line(colour = "black", size = 0),axis.line.y = element_line(colour = "black", size = 0))
)

最后将两张图进行拼接并保存:

p1_cowplot <- ggdraw(p1)
p2_cowplot <- ggdraw(p2)
combined_plot <- plot_grid(p1_cowplot, p2_cowplot, ncol = 2, labels = "AUTO") #, labels = "AUTO"
combined_plot
ggsave("combined_plot.jpg", width = 28, height = 10, units = "cm", dpi= 600)

结果展示:

在这里插入图片描述

欢迎大家交流指正!

http://www.lryc.cn/news/297577.html

相关文章:

  • Open3D 模型切片
  • KtConnect 本地连接连接K8S工具
  • 【Java万花筒】数据的安全钥匙:Java的加密与保护方法
  • 【Java多线程案例】实现阻塞队列
  • 【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏3(附项目源码)
  • home work day5
  • c#安全-nativeAOT
  • 【Java】案例:检测MySQL是否存在某数据库,没有则创建
  • 内网渗透靶场02----Weblogic反序列化+域渗透
  • [嵌入式系统-9]:C语言程序调用汇编语言程序的三种方式
  • 备战蓝桥杯---搜索(完结篇)
  • 深入浅出:Golang的Crypto/SHA256库实战指南
  • Unity_ShaderGraph节点问题
  • Java集合 Collection接口
  • C# Task的使用
  • 尚硅谷Ajax笔记
  • 【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。
  • AcWing 第 142 场周赛 B.最有价值字符串(AcWing 5468) (Java)
  • 滑块识别验证
  • 每日五道java面试题之java基础篇(四)
  • 我的docker随笔43:问答平台answer部署
  • 17、ELK
  • React+Antd+tree实现树多选功能(选中项受控+支持模糊检索)
  • 鸿蒙 WiFi 扫描流程(2)
  • 微信小程序(四十)API的封装与调用
  • WebSocket+Http实现功能加成
  • go语言实现LRU缓存
  • git的奇特知识点
  • 按键扫描16Hz-单片机通用模板
  • 在容器镜像中为了安全为什么要删除 setuid 和 setgid?