当前位置: 首页 > news >正文

cesium系列篇:Entity vs Primitive 源码解析(从Entity到Primitive)02

上篇文章中,我们介绍了使用viewer.entities.add添加entity之后的信号传递以及最后entity对象被传递到GeometryVisualizer

这篇文章,我们则介绍如何在逐帧渲染的过程中根据GeometryVisualizer中的entity对象创建相应的primitive

这是下文中涉及到的类的类图,从中可以清晰的了解各个对象之间的关系,下面我们结合代码来仔细讲解。

在这里插入图片描述

循环的一帧

我们先看下viewer初始化的时候做了什么,在何处定义了每一帧的循环,并持续的进行渲染,结合时序图(见第三节)和源码,可以将其分为两个部分

Viewer初始化

  1. viewer初始化并创建clock
function Viewer(container, options){let clock;let clockViewModel;let destroyClockViewModel = false;if (defined(options.clockViewModel)) {clockViewModel = options.clockViewModel;clock = clockViewModel.clock;} else {clock = new Clock();clockViewModel = new ClockViewModel(clock);destroyClockViewModel = true;}
}
  1. clock作为参数之一创建cesiumWidget
// 省略其他参数
const cesiumWidget = new CesiumWidget(cesiumWidgetContainer, {clock: clock});
  1. 添加监听事件,建立事件响应,其效果我们在后面再具体描述
eventHelper.add(clock.onTick, Viewer.prototype._onTick, this);

cesiumWidget初始化

  1. 在构造函数中设置渲染循环策略this.useDefaultRenderLoop
this._useDefaultRenderLoop = undefined;
this.useDefaultRenderLoop = defaultValue(options.useDefaultRenderLoop,true
);

结合useDefaultRenderLoopset函数可知其实是调用了startRenderLoop函数

useDefaultRenderLoop: {get: function () {return this._useDefaultRenderLoop;},set: function (value) {if (this._useDefaultRenderLoop !== value) {this._useDefaultRenderLoop = value;if (value && !this._renderLoopRunning) {startRenderLoop(this);}}},
}
  1. startRenderLoop中定义了render函数并每一帧进行调用
function startRenderLoop(widget) {widget._renderLoopRunning = true;let lastFrameTime = 0;function render(frameTime) {// 此处省略细节widget.render();requestAnimationFrame(render);}requestAnimationFrame(render);
}
  1. render函数中起实际作用的是函数widget.render,其内部通过调用this._clock.tick()发出信号,结合上一节viewer初始化中提到的事件监听的建立可以知道,进行响应的是Viewer.prototype._onTick函数
CesiumWidget.prototype.render = function () {if (this._canRender) {this._scene.initializeFrame();const currentTime = this._clock.tick();this._scene.render(currentTime);} else {this._clock.tick();}
};Clock.prototype.tick = function () {this.onTick.raiseEvent(this);return currentTime;
};
  1. Viewer.prototype._onTick函数中,会通过调用函数this._dataSourceDisplay.update(time)进行实际的primitive对象的创建
Viewer.prototype._onTick = function (clock) {const isUpdated = this._dataSourceDisplay.update(time);
};

时序图

  • 这里我们附上整个过程的时序图,帮助大家更好的了解整个过程
    [图片]

生成Primitive

通过上面的描述,我们知道了cesium的每一帧是如何更新的,以及其通过调用this._dataSourceDisplay.update(time)进行primitive的创建,下面我们就探究下具体的创建过程

  1. update中,获取了this._defaultDataSource_visualizers属性,通过上一篇文章我们知道,其是一个包含了GeometryVisualizer等多个Visualizer的列表,其中GeometryVisualizer是后续创建polygon对应primitive的类

    DataSourceDisplay.prototype.update = function (time) {visualizers = this._defaultDataSource._visualizers;vLength = visualizers.length;for (x = 0; x < vLength; x++) {result = visualizers[x].update(time) && result;}return result;
    };
    

    [图片]

  2. GeometryVisualizerupdate函数中主要做了如下几件事:

    • 获取被添加对象,在上一篇文章中我们知道,通过_onCollectionChanged函数,将添加的entity添加到了this._addedObjects属性中

      const addedObjects = this._addedObjects;
      addedObjects.set(id, entity);
      
    • 遍历每一个被添加的对象

      • 创建UpdaterSet,其内部的updaters包含了PolygonGeometryUpdater在内的10个Updater
        [图片]

      • 通过updater尝试创建instance(后面详细介绍)

    • 移除已经被添加的对象

    • batch中创建primitive(后面详细介绍)

代码节选如下:

GeometryVisualizer.prototype.update = function (time) {// 获取被添加对象const addedObjects = this._addedObjects;const added = addedObjects.values;// 遍历每一个被添加的对象for (i = added.length - 1; i > -1; i--) {entity = added[i];id = entity.id;// 创建UpdaterSetupdaterSet = new GeometryUpdaterSet(entity, this._scene);this._updaterSets.set(id, updaterSet);// 通过每一个updater尝试创建instance 并添加到batch中updaterSet.forEach(function (updater) {that._insertUpdaterIntoBatch(time, updater);});}// 移除已经被添加的对象addedObjects.removeAll();// 在batch中创建primitivelet isUpdated = true;const batches = this._batches;const length = batches.length;for (i = 0; i < length; i++) {isUpdated = batches[i].update(time) && isUpdated;}return isUpdated;
};

生成instance

  1. 获取polygonOutline对应的instance

    • 在函数GeometryVisualizer.prototype._insertUpdaterIntoBatch中将updater传递到StaticOutlineGeometryBatch.prototype.add函数中
    this._outlineBatches[shadows].add(time, updater);
    

    在这里插入图片描述

    • StaticOutlineGeometryBatch.prototype.add先创建polygonOutline对应的instance
    const instance = updater.createOutlineGeometryInstance(time);
    
    • StaticOutlineGeometryBatch.prototype.add中,调用batch.add函数,传入instance,并写入字典this.geometry
    this.geometry.set(id, instance);
    

    在这里插入图片描述

  2. 获取polygon对应的instance

    • 同样在函数GeometryVisualizer.prototype._insertUpdaterIntoBatch中,将updater传递到StaticGeometryColorBatch.prototype.add函数中

      this._closedColorBatches[shadows].add(time, updater);
      

      [图片]

    • StaticGeometryColorBatch.prototype.add先创建polygon对应的instance

    const instance = updater.createFillGeometryInstance(time);
    
    • StaticGeometryColorBatch.prototype.add中,调用batch.add函数,传入instance,并写入字典this.geometry
    this.geometry.set(id, instance);
    

生成primitive

在循环中遍历所有的GeometryBatch对象,并update
[图片]

  1. 生成polygonOutline对应的primitive

    • 通过StaticOutlineGeometryBatch.prototype.update遍历solidBatchesLength属性,并update
      在这里插入图片描述
    • batch.update中生成primitive
      在这里插入图片描述
  2. 生成polygon对应的primitive

    • 通过StaticGeometryColorBatch.prototype.update调用updateItems函数,在其内部,遍历batchupdate
      [图片]

    • batch.update中生成primitive
      [图片]

时序图

  • 在这里我们附上整个过程的时序图,可以帮助大家更好的了解整个过程
    在这里插入图片描述

后续

  • 后面我们会进一步探索创建得到的primitive如何被渲染,并对比其和我们直接添加的primitive在组织结构上有什么区别
http://www.lryc.cn/news/295224.html

相关文章:

  • golang windows 环境搭建 环境配置
  • 【Git】06 常用场景
  • docker下nacos(1.2.0)的持久化
  • Win32 SDK Gui编程系列之--弹出式菜单
  • VisaulStudio2022下用VB.net实现socket与西门子PLC进行通讯案例(优化版)
  • npm安装命令
  • 【Git版本控制 01】基本操作
  • Spring 开发 pom.xml 配置文件(通用配置)
  • LabVIEW高精度主动模拟肺系统的开发与应用
  • 打包 iOS 的 IPA 文件
  • [Vulnhub靶机] DriftingBlues: 2
  • 鸿蒙 WiFi 扫描流程(1)
  • 基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---DCNv4结合SPPF ,助力自动驾驶(一)
  • (十三)springboot实战——springboot前后端分离方式项目集成spring securtity安全框架
  • XCTF:3-1[WriteUP]
  • 常用ES技巧二
  • 鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Rating组件
  • Python进阶--爬取下载人生格言(基于格言网的Python3爬虫)
  • FastAdmin
  • Java设计模式大全:23种常见的设计模式详解(一)
  • SaperaCamExpert(相机专家)中文使用指南
  • ES鉴权设计以及相关探讨
  • 为什么SpringBoot胖Jar不好
  • Java学习笔记2024/2/6
  • 2024 高级前端面试题之 前端安全模块 「精选篇」
  • SpringBoot Security安全认证框架初始化流程认证流程之源码分析
  • 2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测
  • test1
  • 远程主机可能不符合 glibc 和 libstdc++ Vs Code 服务器的先决条件
  • 备战蓝桥杯---数据结构与STL应用(进阶2)