当前位置: 首页 > news >正文

轮转数组[中等]

优质博文:IT-BLOG-CN

一、题目

给定一个整数数组nums,将数组中的元素向右轮转k个位置,其中k是非负数。

示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]

1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105

进阶: 尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。你可以使用空间复杂度为O(1)的原地算法解决这个问题。

二、代码

【1】使用额外的数组: 我们可以使用额外的数组来将每个元素放至正确的位置。我们遍历原数组,将原数组下标为i的元素放至新数组下标为(i+k) mod nums.length的位置,最后将新数组拷贝至原数组即可。

class Solution {public void rotate(int[] nums, int k) {// 使用一个等长的数组int[] newArray = new int[nums.length];for (int i = 0; i < nums.length; i++) {newArray[(i + k) % nums.length] = nums[i];}System.arraycopy(newArray, 0, nums, 0, nums.length);}
}

时间复杂度: O(n)其中n为数组的长度。
空间复杂度: O(n)

【2】数组翻转: 该方法基于如下的事实:当我们将数组的元素向右移动k次后,尾部k mod n个元素会移动至数组头部,其余元素向后移动k mod n个位置。

该方法为数组的翻转: 我们可以先将所有元素翻转,这样尾部的k mod n个元素就被移至数组头部,然后我们再翻转[0,k mod n−1]区间的元素和[k mod n,n−1]区间的元素即能得到最后的答案。

我们以n=7k=3为例进行如下展示:

操作结果
原始数组1 2 3 4 5 6 7
翻转所有元素7 6 5 4 3 2 1
翻转[0,k mod n−1]区间的元素5 6 7 4 3 2 1
翻转 [k mod n,n−1]区间的元素5 6 7 1 2 3 4
class Solution {public void rotate(int[] nums, int k) {// 放置下表越界k %= nums.length;// 数组反转reverse(nums, 0 , nums.length - 1);reverse(nums, 0, k - 1);reverse(nums, k, nums.length - 1);}private void reverse(int[] nums, int start, int end) {while(start < end) {int temp = nums[start];nums[start] = nums[end];nums[end] = temp;++start;--end;}}
}

【3】环状替换: 方法一中使用额外数组的原因在于如果我们直接将每个数字放至它最后的位置,这样被放置位置的元素会被覆盖从而丢失。因此,从另一个角度,我们可以将被替换的元素保存在变量temp中,从而避免了额外数组的开销。

我们从位置0开始,最初令temp=nums[0]。根据规则,位置0的元素会放至(0+k) mod n的位置,令x=(0+k) mod n,此时交换tempnums[x],完成位置x的更新。然后,我们考察位置x,并交换tempnums[(x+k) mod n],从而完成下一个位置的更新。不断进行上述过程,直至回到初始位置0

容易发现,当回到初始位置0时,有些数字可能还没有遍历到,此时我们应该从下一个数字开始重复的过程,可是这个时候怎么才算遍历结束呢?我们不妨先考虑这样一个问题:从0开始不断遍历,最终回到起点0的过程中,我们遍历了多少个元素?由于最终回到了起点,故该过程恰好走了整数数量的圈,不妨设为a圈;再设该过程总共遍历了b个元素。因此,我们有an=bk,即an一定为n,k的公倍数。又因为我们在第一次回到起点时就结束,因此a要尽可能小,故an就是n,k的最小公倍数lcm(n,k),因此b就为lcm(n,k)/k

这说明单次遍历会访问到lcm(n,k)/k个元素。为了访问到所有的元素,我们需要进行遍历的次数为n/(lcm(n,k)/k)=nk/(lcm(n,k))=gcd(n,k)

其中gcd指的是最大公约数。

我们用下面的例子更具体地说明这个过程:

nums = [1, 2, 3, 4, 5, 6]
k = 2

如果读者对上面的数学推导的理解有一定困难,也可以使用另外一种方式完成代码:使用单独的变量count跟踪当前已经访问的元素数量,当count=n时,结束遍历过程。

class Solution {public void rotate(int[] nums, int k) {int n = nums.length;k = k % n;int count = gcd(k, n);for (int start = 0; start < count; ++start) {int current = start;int prev = nums[start];do {int next = (current + k) % n;int temp = nums[next];nums[next] = prev;prev = temp;current = next;} while (start != current);}}public int gcd(int x, int y) {return y > 0 ? gcd(y, x % y) : x;}
}

时间复杂度: O(n)其中n为数组的长度。每个元素只会被遍历一次。
空间复杂度: O(1)我们只需常数空间存放若干变量。

http://www.lryc.cn/news/291713.html

相关文章:

  • 【SpringBoot系列】自动装配的魅力:Spring Boot vs 传统Spring
  • idea自动生成实体类
  • uniapp -- picker民族选择器
  • 生信学习笔记1:学习如何用OPLS-DA分析代谢组数据(从入门到掌握)
  • CDR2024最新版本怎么下载?Coreldraw相关快捷键教程分享
  • C语言实战项目<贪吃蛇>
  • 人工智能时代:AI提示工程的奥秘 —— 驾驭大语言模型的秘密武器
  • Idea编写mapper.xml文件提示表名和字段
  • 解密人工智能:探索机器学习奥秘
  • C语言第十四弹---函数递归
  • etcd自动化安装配置教程
  • 时间序列预测——GRU模型
  • 通用CI/CD软件平台TeamCity全新发布v2023.11——增强Git托管平台的集成
  • C语言:register类型变量
  • android 自定义下拉框
  • 揭开时间序列的神秘面纱:特征工程的力量
  • vue3 源码解析(5)— patch 函数源码的实现
  • 蓝桥杯2024/1/28----十二届省赛题笔记
  • STM32+ESP8266 实现物联网设备节点
  • 免费的ChatGPT网站(7个)
  • Go语言基础之单元测试
  • C++ easyX小程序(介绍几个函数的使用)
  • 配置nginx以成功代理websocket
  • 代码随想录算法训练营第二十二天|235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点
  • collection、ofType、select的联合用法(Mybatis实现树状结构查询)
  • FLUENT Meshing Watertight Geometry工作流入门 - 4 局部加密区域
  • 前端添加富文本/Web 富文本编辑器wangeditor
  • 软件价值2-贪吃蛇游戏
  • 应用案例 | 基于三维机器视觉的汽车副车架在线测量解决方案
  • 线程的创建和使用threading.Thread()