当前位置: 首页 > news >正文

【 USRP 相控阵】X波段相控阵开发平台用户指南

包装

一共三件。

1、AD9081-FMCA-EBZ AD9081 MxFE Evaluation Board,

https://www.analog.com/eval-ad9081

  • AD9081 的全功能评估板
  • 使用 ACE 软件进行控制的 PC 软件
  • HMC7044 的板载时钟用于管理套件和 FPGA 时钟
  • 选择切换到外部直接时钟

AD9081-FMCA-EBZ 评估板包括以各种模式和配置操作 AD9081 所需的所有支持电路。还介绍了用于与套件接口的应用软件。AD9081-FMCA-EBZ 评估板连接到 ADI 公司的 ADS9-V2EBZ,并通过 ACE 软件进行评估。该板还可以与 Xilinx® 或 Intel®的市售现场可编程门阵列 (FPGA) 开发板接口。“AD-FMC-SDCARD 的使用”部分提供了有关如何使用这些平台来评估 AD9081 或 AD9082 的信息。

ACE 软件允许用户以各种模式设置 AD9081 或 AD9082,并捕获模数转换器(ADC)数据进行分析。DPGDownloaderLite 软件生成矢量,并将其传输到数模转换器 (DAC),然后可以将其发送到频谱分析仪,进行进一步分析。有关更多详细信息,请参阅 AD9081 和 AD9082 数据手册,在使用评估板时,必须同时参阅该数据手册和本用户指南。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、ADXUD1AEBZ X/C Band Up/Down Converter

https://wiki.analog.com/resources/eval/user-guides/xud1a
https://wiki.analog.com/resources/eval/user-guides/xud1a/user-guide
在这里插入图片描述
ADXUD1AEBZ评估板是一个四通道上下转换器,专为X波段通用而设计。完整的模拟设备解决方案链由放大器、LNA、开关、混合器、集成PLL/VCO和电源管理电路组成,全部由单个+12V电源供电。频率转换可以使用集成的PLL/VCO或外部LO完成。该评估板旨在与外部低噪声放大器和功率放大器一起使用,以设置用户信号链所需的噪声数字和输出功率。

ADXUD1AEBZ由4个通道组成,能够在8 GHz至12 GHz的射频频段上下转换,以及4.2 GHz至6.3 GHz的IF频段进行上下转换。评估板上的射频输入/输出被带到SMA同轴连接器,而IF输入/输出则被带到专门指定用于传输或接收的SMPM同轴连接器。通过GPIO和SPI线的数字控制通过带有兼容中介板的PMOD连接器建立,以允许系统演示平台(SDP-S)和FMC夹层连接器选项。电路板的控制信号预计为1.8V逻辑,板载电平转换器转换为3.3V的板载逻辑电平。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3、ADAR1000EVAL1Z X/Ku-Band Analog Beamforming Board.

https://wiki.analog.com/resources/eval/user-guides/stingray

在这里插入图片描述

ADAR1000-EVAL1Z评估板是一个模拟波束成形前端,旨在测试ADAR1000和ADTR1107的性能。ADAR1000是一个8 GHz至16 GHz、4通道、X波段和Ku波段波束成形器IC。ADTR1107是一个6 GHz至18 GHz的前端传输/接收模块。

ADAR1000-EVAL1Z板由8个射频电池组成。每个单元包含一个核心ADAR1000,周围环绕着四个ADTR1107。评估板上的所有射频输入/输出都带到SMPM同轴连接器。有一个12V电源输入,电路板所需的所有电压导轨都是在板上产生的。使用系统演示平台(SDP-S)连接器或双PMOD接口启用电路板和波束成形器的数字控制。电路板的控制信号预计为3.3V逻辑,板载电平转换器将其转换为1.8V的片上逻辑电平。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
ADAR1000: 8 GHz to 16 GHz, 4-Channel, X Band and Ku Band Beamformer
ADTR1107: 6 GHz to 18 GHz, Front-End Transmit/Receive Module

RF Detector Block

HMC948 Log Detector
  • ADA4807-1 180MHz, Rail-to-Rail Input/Output Operational Amplifier
  • LTC2314-14 14-Bit, 4.5Msps Serial Sampling ADC
Power Generation
  • LT8652S Dual Channel 18V/8.5A, Synchronous Step-Down Silent Switcher
  • LT8642S 18V/10A Synchronous Step-Down Silent Switcher 2
  • LT3093 –20V/200mA, Ultralow Noise, Ultrahigh PSRR Negative Linear Regulator
  • LT3094 −20V/500mA, Ultralow Noise, Ultrahigh PSRR Negative Linear Regulator
  • LT8606 42V/350mA Synchronous Step-Down Regulator
  • ADP150-1.8 1.8V Ultralow Noise, 150 mA CMOS Linear Regulator
  • ADP5074 2.4A, DC-to-DC Inverting Regulator
Control & Monitoring
  • ADM1172-1 Hot Swap Controller with Power-Fail Comparator
  • ADM1186-2 Quad Voltage Sequencer and Monitor with Programmable Timing
  • LTC2992 Dual, Wide-Range Power Monitor with GPIO (RevB only)
  • LTC4301 Supply Independent Hot Swappable 2-Wire Bus Buffer (RevB only)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

目标应用是相控阵雷达、电子战和地面SATCOM,特别是X波段32发射/32接收通道混合波束形成相控阵雷达。

X波段开发平台突出了完整的系统解决方案。它旨在作为演示混合波束形成相控阵雷达以及实现系统级校准、波束形成算法和其他信号处理算法的测试台。该系统旨在与Xilinx®的ZCU102评估板配对,该评估板具有Zynq® UltraScale+™ ZU9EG FPGA,并提供参考软件、HDL代码和MATLAB系统级接口。

该系统可用于为以下应用程序实现快速上市开发程序:

  • ADEF(相位阵列、雷达、EW、SATCOM)
  • 混合波束成形
  • 电子测试和测量

一般描述 硬件描述

本用户指南是使用X波段相控阵开发平台的系统工程师和软件开发人员的主要信息来源。目标应用是相控阵雷达、电子战和地面SATCOM,特别是X波段(8 GHz至12 GHz)的32通道发射/32接收混合波束成形相控阵相控阵。

系统平台突出了一个完整的系统解决方案。它旨在作为演示相控阵系统级校准、混合波束形成(模拟/数字)算法和其他信号处理算法的测试台。该板旨在与Xilinx®的ZCU102评估板配对,该评估板采用Zynq® UltraScale+™ ZU9EG FPGA,并提供参考软件和HDL代码。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

软件

MATLAB 2021b or 2022a

  • MATLAB Communications Toolbox
  • DSP System Toolbox
  • Signal Processing Toolbox
  • Curve Fitting Toolbox
  • Instrument Control Toolbox
  • Communications Toolbox Support Package for Xilinx Zynq-Based Radio.
  • Analog Devices High Speed Converter Toolbox. Can be installed through MATLAB
  • Analog Devices RF Microwave Toolbox.

https://github.com/analogdevicesinc/HighSpeedConverterToolbox
https://github.com/analogdevicesinc/RFMicrowaveToolbox

XBDP_SimpleRx.m

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Using this script as a basis, the user can modify the script for their own use case such that they can:

  • View Analog Array Channel Mapping Using, For Example, sray.ArrayMap
  • Change Rx NCO Frequencies Using, For Example, rx.MainNCOFrequencies or rx.ChannelNCOFrequencies
  • Change Rx NCO Phases Using, For Example, rx.MainNCOPhases or rx.ChannelNCOPhases
  • Change Rx Analog per Channel Gain Using, For Example, sray.RxGain
  • Change Rx Analog per Channel Phases Using, For Example, sray.RxPhase
  • Change Rx Analog per Channel Attenuation Using, For Example, sray.RxAttn
  • Latch Rx Analog Settings Using, For Example, sray.LatchRxSettings
  • Capture Simultaneous Complex-Valued Rx Data for All Enabled Channels: data=rx()
  • Beam steer using sray.SteerRx(azimuth,elevation,arrayPhaseOffsets)
  • Beam taper using sray.TaperRx(window,gain,arrayGainOffsets)
  • Analyze and Post-Process Captured Waveforms
  • XBDP_SimpleTx.m
  • This script is to be used with the Analog Devices X-Band Platform to demonstrate relatively simple MATLAB control of the system. It allows the user to configure the Tx aspects of the system by using the and tx = adi.AD9081.Tx and sray = adi.Stingray system objects.

Using this script as a basis, the user can modify the script for their own use case such that they can:

  • View Analog Array Channel Mapping Using, For Example, sray.ArrayMap
  • Change Tx NCO Frequencies Using, For Example, tx.MainNCOFrequencies or tx.ChannelNCOFrequencies
  • Change Tx NCO Phases Using, For Example, tx.MainNCOPhases or tx.ChannelNCOPhases
  • Change Tx Analog per Channel Gain Using, For Example, sray.TxGain
  • Change Tx Analog per Channel Phases Using, For Example, sray.TxPhase
  • Change Tx Analog per Channel Attenuation Using, For Example, sray.TxAttn
  • Latch Tx Analog Settings Using, For Example, sray.LatchTxSettings
  • Transmit Complex-Valued Tx waveforms for All Enabled Channels: release(tx)
  • Beam steer using sray.SteerTx(azimuth,elevation,arrayPhaseOffsets)
  • Beam taper using sray.TaperTx(window,gain,arrayGainOffsets)

主要原理图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#specifications

Price: $3,234.00
Part Number: EK-U1-ZCU102-G
Lead Time: 8 weeks
Device Support: Zynq UltraScale+ MPSoC
在这里插入图片描述
在这里插入图片描述

https://wiki.analog.com/resources/eval/user-guides/x-band-platform
https://www.analog.com/en/technical-articles/hybrid-beamforming-receiver-dynamic-range.html
https://github.com/mathworks/Phaser-Control-with-MATLAB

混合波束成形接收器动态范围理论到实践

本文介绍了以下在相控阵列混合波束形成架构中接收器动态范围指标的测量与分析的比较。一个商用的32通道开发平台用于验证测量分析。回顾了子阵列波束形成的接收器分析,重点是处理模拟子阵列中组合信号的信号增益和噪声增益之间的差异。分析了开发平台接收器的性能,并与测量结果进行了比较。讨论了结果摘要,旨在提供一个可测量的与建模的参考点,该参考点可用于预测大型系统的性能。

http://www.lryc.cn/news/291637.html

相关文章:

  • C++关键词auto详解
  • 【GPU驱动开发】- GPU架构流程
  • UE5在VisualStudio升级后产生C++无法编译的问题
  • 目标检测:1预备知识
  • 【Linux取经路】进程控制——进程等待
  • 虹科干货 | 如何使用nProbe Cento构建100 Gbit NetFlow 传感器
  • Web前端入门 - HTML JavaScript Vue
  • (Sping Xml方式整合第三方框架)学习Spring的第十天
  • 单片机驱动多个ds18b20
  • GitLab16.8配置webhooks、Jenkins2.4配置GitLab插件实现持续集成、配置宝塔面板实现持续部署(其三)
  • 鸿蒙会取代Android吗?听风就是雨
  • 检测CUDA 是否能访问GPU时回应速度慢【笔记】
  • 大模型运行成本对比:GPT-3.5/4 vs. 开源托管
  • fastadmin后台自定义按钮和弹窗
  • 《高性能MySQL》
  • postman用法
  • MySQL之数据库DQL
  • 《区块链简易速速上手小册》第9章:区块链的法律与监管(2024 最新版)
  • Spring Boot 中操作 Bean 的生命周期
  • Linux ---- Shell编程三剑客之AWK
  • Netty入门使用
  • go并发编程-runtime、Channel与Goroutine
  • HTTP概述
  • ubuntu20配置mysql8
  • CPU-Cache结构查看
  • Wireshark网络协议分析 - Wireshark速览
  • 查看进程创建的所有线程
  • 汽车软件开发模式的5个特点
  • 双屏联动系统在展厅设计中的互动类型与效果
  • STM32F407移植OpenHarmony笔记5