当前位置: 首页 > news >正文

JUC并发编程-四大函数式接口、Stream 流式计算、ForkJoin并行执行任务

12. 四大函数式接口

新时代的程序员:lambda表达式、链式编程、函数式接口、Stream流式计算

函数式接口:只有一个方法的接口,可以有一些默认的方法

如:Runnable接口函数

在这里插入图片描述

1)Function 函数型接口

在这里插入图片描述

public class FunctionDemo {public static void main(String[] args) {Function<String, String> function = (str) -> {return str;};System.out.println(function.apply("aaaaaaaaaa"));}
}

2)Predicate 断定型接口

在这里插入图片描述

public class PredicateDemo {public static void main(String[] args) {Predicate<String> predicate = (str) -> {return str.isEmpty();};// falseSystem.out.println(predicate.test("aaa"));// trueSystem.out.println(predicate.test(""));}
}

3)Consummer 消费型接口

在这里插入图片描述

在这里插入图片描述

/*** 消费型接口 没有返回值!只有输入!*/
public class Demo3 {public static void main(String[] args) {Consumer<String> consumer = (str)->{System.out.println(str);};consumer.accept("abc");}
}

4)Suppier 供给型接口

在这里插入图片描述

在这里插入图片描述

/*** 供给型接口,只返回,不输入*/
public class Demo4 {public static void main(String[] args) {Supplier<String> supplier = ()->{return "1024";};System.out.println(supplier.get());}

13. Stream 流式计算

在这里插入图片描述
在这里插入图片描述

/*** Description:* 题目要求: 用一行代码实现* 1. Id 必须是偶数* 2.年龄必须大于23* 3. 用户名转为大写* 4. 用户名倒序* 5. 只能输出一个用户**/public class StreamDemo {public static void main(String[] args) {User u1 = new User(1, "a", 23);User u2 = new User(2, "b", 23);User u3 = new User(3, "c", 23);User u4 = new User(6, "d", 24);User u5 = new User(4, "e", 25);List<User> list = Arrays.asList(u1, u2, u3, u4, u5);//封装对象// lambda、链式编程、函数式接口、流式计算list.stream().filter(user -> {return user.getId()%2 == 0;}).filter(user -> {return user.getAge() > 23;}).map(user -> {return user.getName().toUpperCase();}).sorted((user1, user2) -> {return user2.compareTo(user1);}).limit(1).forEach(System.out::println);}
}

14. ForkJoin

ForkJoin 在JDK1.7,并行执行任务提高效率~。在大数据量速率会更快

大数据中:MapReduce 核心思想->把大任务拆分为小任务!

在这里插入图片描述

1)ForkJoin 特点: 工作窃取!

实现原理是:双端队列!从上面和下面都可以去拿到任务进行执行
在这里插入图片描述

2)如何使用ForkJoin?

  • 1、通过ForkJoinPool来执行
  • 2、计算任务 execute(ForkJoinTask task)
  • 3、计算类要去继承ForkJoinTask;
理解API

在这里插入图片描述

ForkJoin 的计算类

package com.marchsoft.forkjoin;import java.util.concurrent.RecursiveTask;public class ForkJoinDemo extends RecursiveTask<Long> {private long star;private long end;/** 临界值 */private long temp = 1000000L;public ForkJoinDemo(long star, long end) {this.star = star;this.end = end;}/*** 计算方法* @return*/@Overrideprotected Long compute() {if ((end - star) < temp) {Long sum = 0L;for (Long i = star; i < end; i++) {sum += i;}return sum;}else {// 使用ForkJoin 分而治之 计算//1 . 计算平均值long middle = (star + end) / 2;ForkJoinDemo forkJoinDemo1 = new ForkJoinDemo(star, middle);// 拆分任务,把线程压入线程队列forkJoinDemo1.fork();ForkJoinDemo forkJoinDemo2 = new ForkJoinDemo(middle, end);forkJoinDemo2.fork();long taskSum = forkJoinDemo1.join() + forkJoinDemo2.join();return taskSum;}}
}

测试类

package com.marchsoft.forkjoin;import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;public class ForkJoinTest {private static final long SUM = 20_0000_0000;public static void main(String[] args) throws ExecutionException, InterruptedException {test1();test2();test3();}/*** 使用普通方法*/public static void test1() {long star = System.currentTimeMillis();long sum = 0L;for (long i = 1; i < SUM ; i++) {sum += i;}long end = System.currentTimeMillis();System.out.println(sum);System.out.println("时间:" + (end - star));System.out.println("----------------------");}/*** 使用ForkJoin 方法*/public static void test2() throws ExecutionException, InterruptedException {long star = System.currentTimeMillis();ForkJoinPool forkJoinPool = new ForkJoinPool();ForkJoinTask<Long> task = new ForkJoinDemo(0L, SUM);ForkJoinTask<Long> submit = forkJoinPool.submit(task);Long along = submit.get();System.out.println(along);long end = System.currentTimeMillis();System.out.println("时间:" + (end - star));System.out.println("-----------");}/*** 使用 Stream 流计算*/public static void test3() {long star = System.currentTimeMillis();long sum = LongStream.range(0L, 20_0000_0000L).parallel().reduce(0, Long::sum);System.out.println(sum);long end = System.currentTimeMillis();System.out.println("时间:" + (end - star));System.out.println("-----------");}
}

.parallel().reduce(0, Long::sum)使用一个并行流去计算整个计算,提高效率。

在这里插入图片描述

JUC并发编程-四大函数式接口、Stream 流式计算、ForkJoin并行执行任务 到此完结,笔者归纳、创作不易,大佬们给个3连再起飞吧

http://www.lryc.cn/news/291126.html

相关文章:

  • 【Tomcat与网络4】Tomcat的连接器设计
  • k8s中调整Pod数量限制的方法
  • 在Java中,实现扩展性通常有几种方法,其中包括接口、抽象类、插件架构和服务加载等方式
  • 【乳腺肿瘤诊断分类及预测】基于自适应SPREAD-PNN概率神经网络
  • 蓝桥杯AT24C02问题记录
  • adb控制设备状态
  • 订婚支出及共同生活消费是否属于彩礼?应否返还?
  • MicroPython核心:优化
  • Opencv——霍夫变换
  • Github 2024-01-28 开源项目日报Top10
  • 【大数据安全】大数据安全的挑战与对策基础设施安全
  • 【LLM多模态】Cogview3、DALL-E3、CogVLM、CogVideo模型
  • python爬虫学习之selenium_chrome handless的使用
  • Spring boot + Azure OpenAI 服务 1.使用 GPT-35-Turbo
  • Vite+Vue3使用Vue-i18n笔记
  • 流量密码《幻兽帕鲁》5天狂销700万份
  • 怎么查询鸿蒙真机支持的API版本
  • 【NodeJS】005- NodeJS的NVM与express框架
  • pandas使用read_csv时报错解决
  • Optimism的挑战期
  • Linux——安装MySQL
  • java常量和kotlin常量
  • Python学习笔记--创建最简单的自定义异常类
  • 2024年,AI 掀起数据与分析市场的新风暴
  • 小程序软件测试应该怎么做?有什么作用?
  • springboot2.2.9整合kafka之KafkaListener实现原理
  • 数据结构day7
  • cleanmymacX有必要买吗
  • 智慧文旅:打造无缝旅游体验的关键
  • C语言 | 求最大/小值小技巧:fmax、fmin函数