当前位置: 首页 > news >正文

有关平方或高次方的公式整理一元高次方程的求解

Part.I Introduction

这篇博文记录一下数学中常用的有关平方或高次方的一些公式。

Chap.I 一些结论

下面一部分汇总了一些重要的结论

  • 完全平方公式:(a±b)2=a2±2ab+b2(a±b)^2=a^2±2ab+b^2(a±b)2=a2±2ab+b2
  • 平方差公式:a2−b2=(a+b)(a−b)a^2-b^2=(a+b)(a-b)a2b2=(a+b)(ab)
  • 三次方公式:(a±b)3=a3±3a2b+3ab2±b3(a±b)^3=a^3±3a^2b+3ab^2±b^3(a±b)3=a3±3a2b+3ab2±b3
  • 三次方和的公式:a3+b3=(a+b)(a2−ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)
  • 三次方差的公式:a3−b3=(a−b)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)
  • 三次方和减三数乘积:a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcac)
  • 二项式定理:(a+b)n=Cn0an+Cn1a(n−1)b+⋯+Cnka(n−k)bk+⋯+Cnnbn(a+b)^n=C^0_na^n+C^1_na^{(n-1)}b+\cdots+C^k_na^{(n-k)}b^k+\cdots+C^n_nb^n(a+b)n=Cn0an+Cn1a(n1)b++Cnka(nk)bk++Cnnbn

Part.II 两项的 n 次方

Chap.I 和差的 n 次方(二项式定理)

(a+b)2=a2+ab+ba+b2=a2+2ab+b2(a+b)^2=a^2+ab+ba+b^2=a^2+2ab+b^2(a+b)2=a2+ab+ba+b2=a2+2ab+b2 这种完全平方公式大家应该很熟悉吧。但是想对它进行扩充:nnn 项和的 nnn 次方该怎样表示呢?

下面再看两个不同项的 nnn 次方:(a+b)n(a+b)^n(a+b)n,这个展开项有现成的公式,即二项式定理!

(a+b)n=Cn0an+Cn1a(n−1)b+⋯+Cnka(n−k)bk+⋯+Cnnbn(a+b)^n=C^0_na^n+C^1_na^{(n-1)}b+\cdots+C^k_na^{(n-k)}b^k+\cdots+C^n_nb^n(a+b)n=Cn0an+Cn1a(n1)b++Cnka(nk)bk++Cnnbn

  • 二项式系数:Cnk(k=0,⋯,n)C^k_n\ (k=0,\cdots,n)Cnk (k=0,,n)
  • 二项式通式:Cnka(n−k)bkC^k_na^{(n-k)}b^kCnka(nk)bk 是展开式中的第 k+1k+1k+1 项,其通项公式可记作:Tk+1=Cnka(n−k)bkT_{k+1}=C^k_na^{(n-k)}b^kTk+1=Cnka(nk)bk

Chap.II n 次方的和差

n次方差之差公式:
an−bn=(a−b)(an−1+an−2b+an−3b3+⋯+abn−2+bn−1)a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^3+\cdots+ab^{n-2}+b^{n-1})anbn=(ab)(an1+an2b+an3b3++abn2+bn1)

n次方之和公式。当n为奇数时,
an+bn=(a+b)(an−1−an−2b+an−3b3+⋯−abn−2+bn−1)a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^3+\cdots-ab^{n-2}+b^{n-1})an+bn=(a+b)(an1an2b+an3b3+abn2+bn1)
当 n 为偶数时,没有n次方和公式,实际上,n为偶数时
an−bn=(a+b)(an−1−an−2b+an−3b3+⋯−abn−2+bn−1)a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^3+\cdots-ab^{n-2}+b^{n-1})anbn=(a+b)(an1an2b+an3b3+abn2+bn1)

也就是说,当 n 为偶数时,an−bna^n-b^nanbn 有两种表达形式;只有当n为奇数时,才有n次方之和公式。

Part.III n 个不同项的平方

考虑 nnn 个不同项的平方:(a+b+c+⋯)2=?(a+b+c+\cdots)^2=?(a+b+c+)2=?

这里先不关心展开后每一项的具体内容是什么,首先关心可以展开成多少项,比如 (a+b)2(a+b)^2(a+b)2 在展开后,不整理的话有 444 项,整理之后有 333 项。为什么区分整理前后呢?因为在某些运算规则下,乘法是不具有交换律的,比如矩阵的乘法。下面列一个表格。

不同项数目展开整理前展开整理后
243
396
41610
52515
nnnn2n^2n2Cn2+nC^2_n+nCn2+n

Part.IV 一元高次方程的求解

Chap.I 一次和二次

一元一次方程(又叫一元线性方程)

a1x+x0=0(a1≠0)a_1x+x_0=0\ (a_1\neq 0)a1x+x0=0 (a1=0) 解为 x=−a0/a1x=-a_0/a_1x=a0/a1


一元二次方程
ax2+bx+c=0(a≠0)ax^2+bx+c=0 (a\neq 0)ax2+bx+c=0(a=0) 其解为 x=−b±b2−4ac2ax=\frac{-b±\sqrt{b^2-4ac}}{2a}x=2ab±b24ac

判别式:Δ=b2−4ac\Delta=b^2-4acΔ=b24ac

  • Δ>0\Delta>0Δ>0:方程有两个不等的实根
  • Δ=0\Delta=0Δ=0:方程有两个相等的实根
  • Δ<0\Delta<0Δ<0:方程有两个不等的虚根

韦达定理:设 x1,x2x_1,x_2x1,x2 是方程的两个根

  • x1+x2=−bax_1+x_2=-\frac{b}{a}x1+x2=ab
  • x1⋅x2=cax_1\cdot x_2=\frac{c}{a}x1x2=ac

Chap.II 一元三次方程

ax3+bx2+cx+d=0(a≠0)ax^3+bx^2+cx+d=0 (a\neq 0)ax3+bx2+cx+d=0(a=0)

其常用解法是意大利学者卡尔丹于1545年发表的卡尔丹公式法。


特殊形式的求根公式 x3+px2+q=0x^3+px^2+q=0x3+px2+q=0

在这里插入图片描述


一般形式的求根公式 卡尔丹法
在这里插入图片描述

在这里插入图片描述

ps:来源于百度百科,具体推导以后再说。

Chap.III 一元四次方程

ax4+bx3+cx2+dx+e=0(a≠0)ax^4+bx^3+cx^2+dx+e=0 (a\neq 0)ax4+bx3+cx2+dx+e=0(a=0)

一元四次方程的求根公式由意大利数学家费拉里首次提出证明。一元三次方程是在进行了巧妙的换元之后,把问题归结成了一元二次方程从而得解的。于是,如果能够巧妙地把一元四次方程转化为一元三次方程或一元二次方程,就可以利用已知的公式求解了。

ps:公式比较冗长,具体可看百度百科。

http://www.lryc.cn/news/29086.html

相关文章:

  • Java笔记3
  • Leetcode.2202 K 次操作后最大化顶端元素
  • JAVA知识点全面总结3:String类的学习
  • Eureka注册中心和Nacos注册中心详解以及Nacos与Eureka有什么区别?
  • Web3D发展趋势以及Web3D应用场景
  • 2023-3-4 刷题情况
  • 前端面试总结
  • Geospatial Data Science (6): Spatial clustering
  • 蚁群算法优化问题
  • 为啥一个 main 方法就能启动项目
  • 洛谷:P1554 梦中的统计 JAVA
  • C++初学笔记整理
  • 记录--在Vue3这样子写页面更快更高效
  • 【程序设计与算法(三)】测验和作业题部分答案汇总(面向对象篇)
  • LeetCode 349. 两个数组的交集和 692. 前K个高频单词
  • SpringCloud的五大组件功能
  • 剑指 Offer II 016. 不含重复字符的最长子字符串
  • HBase读取流程详解
  • Redis学习(一):NoSQL概述
  • ESP32设备驱动-MCP23017并行IO扩展驱动
  • RabbitMQ简介
  • 【项目设计】高并发内存池(五)[释放内存流程及调通]
  • Git标签与版本发布
  • Python面向对象编程
  • 【什么情况会导致 MySQL 索引失效?】
  • Java核心知识点整理之小碎片--每天一点点(坚持呀)--自问自答系列版本
  • js中new Map()的使用方法
  • synchronized从入门到踹门
  • ubuntu-8-安装nfs服务共享目录
  • 算法练习(特辑)设计算法的常用思想