当前位置: 首页 > news >正文

Gunicorn性能优化:提升Python Web应用的服务效率

在Python Web开发中,Gunicorn作为WSGI HTTP服务器,常常作为Web应用(如Django或Flask)与反向代理或负载均衡器之间的桥梁。为了充分发挥其性能,本文将提供一些实用的Gunicorn配置建议。

Gunicorn架构

Gunicorn采用了预派生(pre-fork)模型,这意味着它在处理任何HTTP请求之前会创建子进程。主进程负责监控并保持工作进程的数量稳定。如果工作进程异常退出,主进程会重新启动新的工作进程。

性能优化要点

1. 工作进程(Workers)

  • 对于CPU密集型应用,增加工作进程数是关键。
  • 推荐的工作进程数公式是:(2 * CPU核心数) + 1。
  • 例如,在双核CPU的机器上,建议设置5个工作进程。
gunicorn --workers=5 main:app

KkhhT.png

Gunicorn 具有默认的工作类(同步sync)

  1. 线程(Threads)
  • 对于I/O密集型应用,使用线程可以提高效率。
  • 每个工作进程可以拥有多个线程,共享内存空间。
  • 线程的使用需要将工作类设置为gthread。
gunicorn --workers=5 --threads=2 main:app

Kkze9.png

上面的命令与以下命令相同:

gunicorn --workers=5 --threads=2 --worker-class=gthread main:app

最大并发请求数为workers * threads,上述情况下是10。

当使用工作进程和线程时,建议的最大并发请求数仍然是(2*CPU)+1

因此,如果使用的是四核(4个CPU)的计算机,并且希望同时使用工作进程和线程,可以使用3个工作进程和3个线程,以获得9个最大并发请求。

gunicorn --workers=3 --threads=3 main:app
  1. 伪线程”(Pseudo-threads)
  • 对于异步编程,如gevent或asyncio,Gunicorn通过设置特定的工作进程类来支持。
  • 例如,在单核机器上使用gevent:
gunicorn --worker-class=gevent --worker-connections=1000 --workers=3 main:app

worker-connections 是 gevent 工作进程类的特定设置。

(2*CPU)+1 仍然是建议的工作进程数量,因为只有1个核心,将使用3个工作进程。

在这种情况下,最大并发请求数是3000(3个工作进程 * 每个工作进程的1000个连接)。

并发与并行

理解并发(Concurrency)与并行(Parallelism)的区别是优化性能的关键。在Python中,线程和“伪线程”是并发执行的手段,但不是并行;而工作进程则既是并发的也是并行的。

总结

  • 对于I/O密集型应用,使用“伪线程”可获得最佳性能。
  • 对于CPU密集型应用,增加工作进程数是关键。
  • 如果内存使用是瓶颈,考虑使用线程。
  • 不确定时,从基本配置开始,逐步调整。

此外,还有其他优化建议,包括调整worker类、超时时间、保持活动连接、worker类参数、使用反向代理、监控和扩展、优化应用代码、升级Gunicorn和合理分配资源:

  1. 调整 Worker 类:

    • Gunicorn 支持不同的 worker 类。默认是同步的,但为了更好地支持异步框架,考虑使用异步的 worker,如 geventeventlet
    • 示例使用 gevent:gunicorn -k gevent -w 4 myapp:app
  2. Worker 超时:

    • 为 worker 进程设置合理的超时时间。如果 worker 在指定的超时时间内没有响应,Gunicorn 将重新启动它。
    • 示例:gunicorn --timeout 120 myapp:app
  3. 保持活动连接:

    • 调整 keepalive 选项以控制 Gunicorn 在 Keep-Alive HTTP 连接上等待下一个请求的时间。
    • 示例:gunicorn --keep-alive 5 myapp:app
  4. 调整 Worker 类参数:

    • 如果使用异步的 worker 类,如 gevent,考虑调整参数,如 worker 连接的数量。
    • 示例:gunicorn -k gevent --worker-connections 1000 -w 4 myapp:app
  5. 使用反向代理:

    • 将 Gunicorn 部署在反向代理(例如 Nginx 或 Apache)后面,以处理诸如 SSL 终止、静态文件服务和负载均衡等任务。
  6. 监控和扩展:

    • 使用 gunicorn-stats 等工具监控 Gunicorn,或将其集成到监控解决方案中。
    • 考虑通过在负载均衡器后运行 Gunicorn 来进行水平扩展。
  7. 优化应用代码:

    • 优化应用代码以高效处理请求。分析和优化应用代码可以显著影响整体性能。
  8. 升级 Gunicorn:

    • 确保使用最新版本的 Gunicorn,以享受性能改进和错误修复的好处。
  9. 资源分配:

    • 为运行 Gunicorn 的机器分配足够的资源(CPU、内存),考虑应用的需求和流量。

参考文献

  • https://docs.gunicorn.org/en/latest/design.html
  • https://yhbt.net/unicorn/DESIGN.html
  • https://tomayko.com/blog/2009/unicorn-is-unix
  • https://stackoverflow.com/questions/25834333/what-exactly-is-a-pre-fork-web-server-model
  • https://medium.com/building-the-system/gunicorn-3-means-of-concurrency-efbb547674b7
  • https://stackoverflow.com/questions/38425620/gunicorn-workers-and-threads
http://www.lryc.cn/news/290734.html

相关文章:

  • 如何使用ssh key免密码登录服务器?
  • macos Android平台签名证书(.keystore)
  • Kotlin快速入门系列2
  • 单片机之keil软件环境搭建
  • 数学公式OCR识别php 对接mathpix api 使用公式编译器
  • MySQL原理(二)存储引擎(1)概述
  • 微信小程序canvas画布如何解决在for循环绘制图像显示不全的问题
  • Python计算机二级/Python期末考试 刷题(一)
  • 最新GPT4.0使用教程,AI绘画-Midjourney绘画,GPT语音对话使用,DALL-E3文生图+思维导图一站式解决
  • 【JavaScript】两种方法实现继承
  • 张维迎《博弈与社会》笔记(3)导论:一些经济学的基础知识
  • 随机生成UI不重叠
  • 【C/C++】C/C++编程——第一个 C++ 程序:HelloWorld
  • 扩散视觉反事实算法 DVC:对抗性鲁棒分类器 + 扩散模型,跨模态对比原始的 fundus 图 VS 生成的 OCT 图
  • C++(6) 继承
  • 【Servlet】Smart Tomcat插件简化Servlet开发流程及解决常见问题
  • 解决Qt连接不上mysql数据库
  • kubernetes-快速部署一套k8s集群
  • Windows Server 安装 Docker
  • 智能分析网关V4智慧机房:视频AI智能安全监管方案
  • 一些反序列化总结
  • 分披萨(100%用例)C卷(JavaPythonC++Node.jsC语言)
  • SQL字符串截取函数【简笔记】
  • 会话技术复习笔记
  • 我用Rust开发Rocketmq name server
  • 【Deep Dive: Al Webinar】开源人工智能中赋能、透明性和可重复性三者之间的关系...
  • 将Html页面转换为Wordpress页面
  • Next.js 学习笔记(七)——样式
  • 金线检测步骤
  • 电池-电量监测基础知识