当前位置: 首页 > news >正文

HiveSQL题——排序函数(row_number/rank/dense_rank)

一、窗口函数的知识点

1.1 窗户函数的定义

        窗口函数可以拆分为【窗口+函数】。窗口函数官网指路:

LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationicon-default.png?t=N7T8https://cwiki.apache.org/confluence/display/Hive/LanguageManual%20WindowingAndAnalytics

  • 窗口:限定函数的计算范围(窗口函数:针对分组后的数据,从逻辑角度指定计算的范围,并没有从物理上真正的切分,只有group by 是物理分组,真正意义上的分组)
  • 函数:计算逻辑
  •  窗口函数的位置:跟sql里面聚合函数的位置一样,from -> join -> on -> where -> group by->select 后面的普通字段,窗口函数 -> having -> order by  -> lmit 。 窗口函数不能跟聚合函数同时出现。聚合函数包括count、sum、 min、max、avg。
  • sql 执行顺序:from -> join -> on -> where -> group by->select 后面的普通字段,聚合函数-> having -> order by -> limit

1.2 窗户函数的语法

       <窗口函数>window_name  over ( [partition by 字段...]  [order by 字段...]  [窗口子句] )

  • window_name:给窗口指定一个别名。
  • over:用来指定函数执行的窗口范围,如果后面括号中什么都不写,即over() ,意味着窗口包含满足where 条件的所有行,窗口函数基于所有行进行计算。
  • 符号[] 代表:可选项;  | : 代表二选一
  •  partition by 子句: 窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行。分组间互相独立。
  • order by 子句:每个partition内部按照哪些字段进行排序,如果没有partition ,那就直接按照最大的窗口排序,且默认是按照升序(asc)排列。
  • 窗口子句:显示声明范围(不写窗口子句的话,会有默认值)。常用的窗口子句如下:
    rows between unbounded preceding and  unbounded following; -- 上无边界到下无边界(一般用于求 总和)rows between unbounded preceding and current row;  --上无边界到当前记录(累计值)rows between 1 preceding and current row; --从上一行到当前行rows between 1 preceding and 1 following; --从上一行到下一行rows between current row and 1 following; --从当前行到下一行

    ps: over()里面有order by子句,但没有窗口子句时 ,即: <窗口函数> over ( partition by 字段... order by 字段... ),此时窗口子句是有默认值---->   rows between unbounded preceding and current row (上无边界到当前行)。

      此时窗口函数语法:<窗口函数> over ( partition by 字段... order by 字段... ) 等价于

     <窗口函数> over ( partition by 字段... order by 字段... rows between unbounded preceding and current row)
      需要注意有个特殊情况:当order by 后面跟的某个字段是有重复行的时候, <窗口函数> over ( partition by 字段... order by 字段... )  不写窗口子句的情况下,窗口子句的默认值是:range between unbounded preceding and current row(上无边界到当前相同行的最后一行)。

    因此,遇到order by 后面跟的某个字段出现重复行,且需要计算【上无边界到当前行】,那就需要手动指定窗口子句 rows between unbounded preceding and current row ,偷懒省略窗口子句会出问题~

      ps: 窗口函数的执行顺序是在where之后,所以如果where子句需要用窗口函数作为条件,需要多一层查询,在子查询外面进行。

     【例如】求出登录记录出现间断的用户Id

selectid
from (selectid,login_date,lead(login_date, 1, '9999-12-31')over (partition by id order by login_date) next_login_date--窗口函数 lead(向后取n行)--lead(column1,n,default)over(partition by column2 order by column3) 查询当前行的后边第n行数据,如果没有就为nullfrom (--用户在同一天可能登录多次,需要去重selectid,date_format(`date`, 'yyyy-MM-dd') as login_datefrom user_loggroup by id, date_format(`date`, 'yyyy-MM-dd')) tmp1) tmp2
where  datediff(next_login_date, login_date) >=2
group by id;

1.3 窗口函数分类

      哪些函数可以是窗口函数呢?(放在over关键字前面的)

  • 聚合函数
sum(column) over (partition by .. order by .. 窗口子句);
count(column) over (partition by .. order by .. 窗口子句);
max(column) over  (partition by .. order by .. 窗口子句);
min(column) over (partition by .. order by .. 窗口子句);
avg(column) over (partition by .. order by .. 窗口子句);
   ps : 高级聚合函数:

          collect_list 收集并形成list集合,结果不去重;

          collect_set 收集并形成set集合,结果去重; 

      举例:

--每个月的入职人数以及姓名select 
month(replace(hiredate,'/','-')),count(*) as cnt,collect_list(name) as name_list
from employee
group by month(replace(hiredate,'/','-'));/*
输出结果
month  cn  name_list
4	    2	["宋青书","周芷若"]
6	    1	["黄蓉"]
7	    1	["郭靖"]
8	    2	["张无忌","杨过"]
9	    2	["赵敏","小龙女"]
*/
  • 排序函数

      row_number() 、rank()、dense_rank() 函数不支持自定义窗口子句。

--  顺序排序——1、2、3
row_number() over(partition by .. order by .. )--  并列排序,跳过重复序号——1、1、3(横向加)
rank() over(partition by .. order by .. )-- 并列排序,不跳过重复序号——1、1、2(纵向加)
dense_rank()  over(partition by .. order by .. )
  • 前后函数 

       laglead函数不支持自定义窗口子句。

-- 取得column列的前n行,如果存在则返回,如果不存在,返回默认值default
lag(column,n,default) over(partition by.. order by...) as lag_test
-- 取得column列的后n行,如果存在则返回,如果不存在,返回默认值default
lead(column,n,default) over(partition by.. order by...) as lead_test
  • 头尾函数
first_value(column,true)  ---当前窗口column列的第一个数值,如果有null值,则跳过
first_value(column,false) ---当前窗口column列的第一个数值,如果有null值,不跳过
last_value(column,true)  --- 当前窗口column列的最后一个数值,如果有null值,则跳过
last_value(column,false) --- 当前窗口column列的最后一个数值,如果有null值,不跳过

1.4 排序函数

        rank/dense_rank/row_number 函数,一般用于求分组topN。

--  顺序排序——1、2、3
row_number() over(partition by .. order by .. )--  并列排序,跳过重复序号——1、1、3(横向加)
rank() over(partition by .. order by .. )-- 并列排序,不跳过重复序号——1、1、2(纵向加)
dense_rank()  over(partition by .. order by .. )

二、实际案例

2.1 每个学生成绩第二高的科目

0 问题描述

    根据学生成绩表,求出每个学生成绩第二高的科目。

1 数据准备

create table if not exists table5
(class     string comment '学科',student   string comment '学生姓名',score     int comment '成绩'
)comment '学生成绩表';insert overwrite table table5 values
('a','吱吱1',100),
('a','吱吱2',60),
('b','吱吱1',80),
('b','吱吱2',70),
('c','吱吱2',50),
('c','吱吱3',90);

2 数据分析

3种排序函数的区别:row_number (行号)-- 1 2 3 ;rank (重复跳过)--1 1 3;dense_rank (重复不跳过) --1 1 2
selectclass,student
from (selectclass,student,score,dense_rank()  over (partition by student order by score desc) rnfrom table5) tmp1
where rn = 2;

3 小结

    排序函数在分组tpoN场景应用十分广泛,需要注意的是在sql语句中,窗口函数的执行顺序是在where过滤条件之后,所以如果where子句需要用窗口函数作为条件,需要多一层查询,在子查询外面进行。

http://www.lryc.cn/news/290397.html

相关文章:

  • 【C语言】(9)分支结构
  • Flink 集成 Debezium Confluent Avro ( format=debezium-avro-confluent )
  • R语言(数据导入,清洗,可视化,特征工程,建模)
  • springboot 整合 Activiti6
  • 微信小程序canvas画布实现直线自由缩放、移动功能
  • Cesium数据加载
  • 【C++历练之路】探秘C++三大利器之一——多态
  • 业务逐字稿
  • 微服务舞台上的“三步曲“:Spring Cloud 服务注册、服务发现与服务调用
  • 中间件
  • 4D毫米波雷达——ADCNet 原始雷达数据 目标检测与可行驶区域分割
  • 「优选算法刷题」:提莫攻击
  • 260:vue+openlayers 通过webgl方式加载矢量图层
  • Android 8.1 相关修改
  • EG-2121CA (晶体振荡器 低抖动表面声波(SAW)振荡器)
  • Django知识随笔
  • Facebook 广告帐户:多账号运营如何防止封号?
  • 酷开会员 | 用酷开系统点亮多彩休闲时刻
  • 分配土地(100%用例)C卷(JavaPythonC++Node.jsC语言)
  • 电源的纹波
  • 85.网游逆向分析与插件开发-物品使用-物品使用的逆向分析与C++代码的封装
  • JVM系列——垃圾收集器
  • 那些年与指针的情仇(二)---二级指针指针与数组的那点事函数指针
  • APPCRASH 文件管理器不停重启问题记录 (最后reinstall解决)以及重装后到底会怎样
  • 导出excel功能,前端的解决方案
  • 【lesson24】MySQL索引的理解
  • Oracle篇—分区索引的重建和管理(第三篇,总共五篇)
  • 前端大厂面试题探索编辑部——第一期
  • 图扑 HT UI 5.0 全新升级,开箱即用!
  • 数据结构----链表介绍、模拟实现链表、链表的使用