当前位置: 首页 > news >正文

[足式机器人]Part3 机构运动学与动力学分析与建模 Ch01-1 刚体系统的运动学约束

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
《空间机构的分析与综合(上册)》-张启先,感谢张启先先生对机构学的卓越贡献,希望下册有见天明之日!
《高等机构学》-白师贤
《高等空间机构学》-黄真
《机构运动微分几何学分析与综合》-王德伦

食用方法
自由度?约束——本质含义是什么?如何表达?
系统的自由度?广义坐标的自由度?
如何表示约束方程?
务必自己计算自由度,了解约束的含义

机构运动学与动力学分析与建模 Ch00-1-1 刚体系统的运动学约束


1. 广义坐标与约束

1.1 参考坐标

根据上述章节的学习,我们知道:

  • 空间中对某一的表述,需要3个位姿参数(比如点的坐标)——即需要3个约束方程;
  • 空间中对某一矢量的表述,需要2个位姿参数(比如球坐标系下的两个角度值)——即需要2个约束方程;
  • 空间中对某一直线的表述,需要5个位姿参数(给定点+给定矢量)——即需要5个约束方程;
  • 空间中对某一平面的表述,需要4个位姿数(给定矢量+矢量方向上的位置)——即需要4个约束方程;
  • 空间中对某一刚体的表述,需要6个位姿参数(给定点+矢量方向+沿矢量方向的转角)——即需要6个约束方程;

这些例子对于我们理解运动副有很大的作用

而对于刚体系统而言,其运动坐标系的参考坐标具体表示,与所选择的表示方法有关:用符号 q ⃗ Σ M F \vec{q}_{\varSigma _{\mathrm{M}}}^{F} q ΣMF来表示刚体 Σ M \varSigma _{\mathrm{M}} ΣM在坐标系 { F } \left\{ F \right\} {F}下的广义坐标参数。展开可写为:
q ⃗ Σ M F = [ R ⃗ Σ M F θ ⃗ Σ M F ] \vec{q}_{\varSigma _{\mathrm{M}}}^{F}=\left[ \begin{array}{c} \vec{R}_{\varSigma _{\mathrm{M}}}^{F}\\ \vec{\theta}_{\varSigma _{\mathrm{M}}}^{F}\\ \end{array} \right] q ΣMF=[R ΣMFθ ΣMF]
其中: R ⃗ Σ M F \vec{R}_{\varSigma _{\mathrm{M}}}^{F} R ΣMF表示体坐标系 { M } \left\{ M \right\} {M}在固定坐标系 { F } \left\{ F \right\} {F}下的位置参数, θ ⃗ Σ M F \vec{\theta}_{\varSigma _{\mathrm{M}}}^{F} θ ΣMF表示刚体的姿态参数(欧拉角,四元数,罗德里格斯参数等),对于不同的表达方式, q ⃗ Σ M F \vec{q}_{\varSigma _{\mathrm{M}}}^{F} q ΣMF有不同的维数。

1.2 约束

若一个系统由多个刚体之间的相互作用组成(存在运动副连接),此时该系统中每个单独刚体的运动,都会受到其他部分的影响——确立一组相互独立的广义坐标(即自由度——此时的自由度表示为所需的广义坐标数量,即需要几个自由度才能完整的描述该系统各个构件状态),运动学约束即上述的约束方程,几个约束方程即限制了几个自由度。

对于一个多体系统而言,其广义坐标的数目为 n n n,这些刚体之间存在 n c n_{\mathrm{c}} nc个约束方程

若能将约束方程写成如下的矩阵形式:
C ( q ⃗ , t ) = [ C 1 ( q ⃗ , t ) C 2 ( q ⃗ , t ) ⋮ C n c ( q ⃗ , t ) ] = C ( q ⃗ 1 , q ⃗ 2 , ⋯   , q ⃗ n , t ) \boldsymbol{C}\left( \vec{\boldsymbol{q}},t \right) =\left[ \begin{array}{c} C_1\left( \vec{\boldsymbol{q}},t \right)\\ C_2\left( \vec{\boldsymbol{q}},t \right)\\ \vdots\\ C_{\mathrm{n}_{\mathrm{c}}}\left( \vec{\boldsymbol{q}},t \right)\\ \end{array} \right] =\boldsymbol{C}\left( \vec{q}_1,\vec{q}_2,\cdots ,\vec{q}_{\mathrm{n}},t \right) C(q ,t)= C1(q ,t)C2(q ,t)Cnc(q ,t) =C(q 1,q 2,,

http://www.lryc.cn/news/289694.html

相关文章:

  • 51单片机智能小车
  • 9. 嵌入式系统开发:安全性与可靠性设计模式---引言
  • 内网安全:Exchange服务
  • Flask介绍和优势
  • 喜报|「云原生数据库PolarDB」、「阿里云瑶池一站式数据管理平台」揽获“2023技术卓越奖”
  • 【动态规划】【字符串】【行程码】1531. 压缩字符串
  • 检测头篇 | 原创自研 | YOLOv8 更换 SEResNeXtBottleneck 头 | 附详细结构图
  • PHP语法
  • MySQL:三大日志(binlog、redolog、undolog)
  • 【QT+QGIS跨平台编译】之十二:【libpng+Qt跨平台编译】(一套代码、一套框架,跨平台编译)
  • Windows 和 Anolis 通过 Docker 安装 Milvus 2.3.4
  • JUC并发编程与源码分析学习笔记(三)
  • 力扣日记1.28-【回溯算法篇】93. 复原 IP 地址
  • Java 的反射学习总结
  • 图论第二天|695. 岛屿的最大面积 1020. 飞地的数量 130. 被围绕的区域 417. 太平洋大西洋水流问题 827.最大人工岛
  • 【JavaScript 基础入门】02 JavaScrip 详细介绍
  • 鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之CheckboxGroup组件
  • 【极数系列】Flink配置参数如何获取?(06)
  • 【docker】linux系统docker的安装及使用
  • 【C++】一题掌握空指针
  • 初识HarmonyOS
  • 备战蓝桥杯---二分(入门)
  • 开发 Chrome 浏览器插件时进行 Vue3+Vite 多页面多入口配置
  • MacOS X 中 OpenGL 环境搭建 Makefile的方式
  • 前端工程化之:webpack1-6(编译过程)
  • javaweb学习问题集
  • java—AWT
  • SQL注入-sqli-labs-master第一关
  • 简述云原生基础定义及关键技术
  • 游戏中排行榜的后台实现