当前位置: 首页 > news >正文

数据分析-Pandas如何用图把数据展示出来

数据分析-Pandas如何用图把数据展示出来

俗话说,一图胜千语,对人类而言一串数据很难立即洞察出什么,但如果展示图就能一眼看出来门道。数据整理后,如何画图,画出好的图在数据分析中成为关键的一环。

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

经典算法

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

LLM应用

大模型查询工具助手之股票免费查询接口

Python技巧-终端屏幕打印光标和文字控制

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas


导入关键模块

import pandas as pd
import matplotlib.pyplot as plt

数据准备

仍然使用air_quality数据来举例,读取NO2数据:

In [1]: air_quality = pd.read_csv("data/air_quality_no2.csv", index_col=0, parse_dates=True)In [2]: air_quality.head()
Out[2]: station_antwerp  station_paris  station_london
datetime                                                           
2019-05-07 02:00:00              NaN            NaN            23.0
2019-05-07 03:00:00             50.5           25.0            19.0
2019-05-07 04:00:00             45.0           27.7            19.0
2019-05-07 05:00:00              NaN           50.4            16.0
2019-05-07 06:00:00              NaN           61.9             NaN

时间趋势图

拿到PM25数据,急不可耐就想画张图:

In [3]: air_quality.plot()
Out[3]: <Axes: xlabel='datetime'>In [4]: plt.show()

在这里插入图片描述

很简单吧,两行解决战斗,就是调用plot函数,然后显示函数show。

当然,这样就是一张图里把所有的数值类的列都给画出来了。有点太花,看不清楚。

Boss看了,要求清晰一点,清爽一点。只要巴黎的监测数据,还不是手到擒来。

In [5]: air_quality["station_paris"].plot()
Out[5]: <Axes: xlabel='datetime'>In [6]: plt.show()

在这里插入图片描述

只要从pandas中选择数据子集就行,然后照样调用显示函数。

同类项比较

有时候要卷一卷,就是要一较高下。如何比较两个地方的 N O 2 NO_2 NO2 的关系图呢?

In [7]: air_quality.plot.scatter(x="station_london", y="station_paris", alpha=0.5)
Out[7]: <Axes: xlabel='station_london', ylabel='station_paris'>In [8]: plt.show()

尝试下散点图,把London和Paris分别作为x,y轴。

画图plot函数默认是画曲线的,即line函数,而散点图,就需要调用对应的scatter函数。

在这里插入图片描述

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End


GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

http://www.lryc.cn/news/289516.html

相关文章:

  • Logistics 逻辑回归概念
  • Elasticsearch安装Head图形插件
  • 【C++】——类和对象(中)
  • uniapp组件库Card 卡片 的使用方法
  • 一款强大的矢量图形设计软件:Adobe Illustrator 2023 (AI2023)软件介绍
  • 对于循环的一次探索
  • 设计模式:简介及基本原则
  • 营销领域有哪些著名的模型?如销售漏斗等
  • JavaScript学习-let、var、const的使用
  • 【Java】SpringMVC参数接收(一)
  • File类知识点回顾
  • 2024新版68套Axure RP大数据可视化大屏模板及通用组件+PSD源文件
  • Optional lab: Linear Regression using Scikit-LearnⅠ
  • CentOS使用
  • [SWPUCTF 2018]SimplePHP1
  • api管理工具的新发现
  • 2024 年 eBPF 和网络趋势预测
  • 2024.1.27 GNSS 学习笔记
  • Unity - 将项目转为HDRP
  • ETCD高可用架构涉及常用功能整理
  • 深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化
  • PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)
  • 编写Bash脚本程序从记录文件中提取history命令的优化,再介绍linux bash语法和结构
  • Python中Numba库装饰器
  • Spring Boot Aop 执行顺序
  • 100天精通鸿蒙从入门到跳槽——第16天:ArkTS条件渲染使用教程
  • 【Linux C | 进程】Linux 进程间通信的10种方式(1)
  • 橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式
  • 看图说话:Git图谱解读
  • linux新增用户,指定home目录和bash脚本且加入到sudoer列表