当前位置: 首页 > news >正文

TensorFlow2实战-系列教程5:猫狗识别任务数据增强实例

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

1、猫狗识别任务

import os
import warnings
warnings.filterwarnings("ignore")
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
base_dir = './data/cats_and_dogs'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')train_cats_dir = os.path.join(train_dir, 'cats')
train_dogs_dir = os.path.join(train_dir, 'dogs')validation_cats_dir = os.path.join(validation_dir, 'cats')
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(64, 64, 3)),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(64, (3,3), activation='relu'),tf.keras.layers.MaxPooling2D(2,2),tf.keras.layers.Conv2D(128, (3,3), activation='relu'),tf.keras.layers.MaxPooling2D(2,2),tf.keras.layers.Flatten(),tf.keras.layers.Dense(512, activation='relu'),tf.keras.layers.Dense(1, activation='sigmoid')
])model.compile(loss='binary_crossentropy',optimizer=Adam(lr=1e-4),metrics=['acc'])

依次是导包、指定数据路径、构建模型、配置训练器等,这些都与前面TensorFlow2实战-系列教程3:猫狗识别1完全一致

2、数据增强

train_datagen = ImageDataGenerator(rescale=1./255,rotation_range=40,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,fill_mode='nearest')test_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory(train_dir,  target_size=(64, 64),  batch_size=20,class_mode='binary')validation_generator = test_datagen.flow_from_directory(validation_dir,target_size=(64, 64),batch_size=20,class_mode='binary')history = model.fit_generator(train_generator,steps_per_epoch=100,  # 2000 images = batch_size * stepsepochs=100,validation_data=validation_generator,validation_steps=50,  # 1000 images = batch_size * stepsverbose=2)

train_datagen:

  1. 这里将rescale重新缩放、旋转、平移变换、剪切变换、缩放、水平翻转、以临近方式填充等多种方式对训练数据进行数据增强
  2. shear_range=0.2 表示图像将在 -0.2 到 +0.2 弧度的范围内随机剪切

test_datagen:

  1. 验证数据,没有进行数据增强,这里只进行了归一化操作

train_generator:

  1. train_dir 目录加载训练图像,并应用前面定义的数据增强
  2. target_size=(64, 64):调整图像大小为 64x64 像素
  3. batch_size=20:每批次处理 20 张图像
  4. class_mode='binary':因为是二分类任务。

validation_generator:

  1. validation_dir 目录加载验证图像,只应用缩放

history:

  1. fit_generator 方法在 TensorFlow 2.2 之后已经被弃用,建议使用 fit 方法替代)
  2. 开始训练
  3. validation_data=validation_generator:指定验证数据生成器
  4. verbose=2:用于控制训练过程中输出的详细程度

3、预测效果展示

import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(len(acc))plt.plot(epochs, acc, 'b', label='Training accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()plt.figure()plt.plot(epochs, loss, 'b', label='Training Loss')
plt.plot(epochs, val_loss, 'r', label='Validation Loss')
plt.title('Training and validation loss')
plt.legend()plt.show()

在这里插入图片描述

在这里插入图片描述

很显然经过数据增强后的模型表现对比原本效果有显著提升

3、加入Dropout

Dropout就是指定比例,对这一层随机杀死一下神经元,这里我们只需要在构建网络的时候在全连接层加上一层Dropout就可以了:

import os
import warnings
warnings.filterwarnings("ignore")
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
base_dir = './data/cats_and_dogs'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')train_cats_dir = os.path.join(train_dir, 'cats')
train_dogs_dir = os.path.join(train_dir, 'dogs')validation_cats_dir = os.path.join(validation_dir, 'cats')
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(64, 64, 3)),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(64, (3,3), activation='relu'),tf.keras.layers.MaxPooling2D(2,2),tf.keras.layers.Conv2D(128, (3,3), activation='relu'),tf.keras.layers.MaxPooling2D(2,2),tf.keras.layers.Flatten(),tf.keras.layers.Dense(512, activation='relu'),tf.keras.layers.Dropout(0.5),tf.keras.layers.Dense(1, activation='sigmoid')
])model.compile(loss='binary_crossentropy',optimizer=Adam(lr=1e-4),metrics=['acc'])
train_datagen = ImageDataGenerator(rescale=1./255,rotation_range=40,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,fill_mode='nearest')test_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory(train_dir,  target_size=(64, 64),  batch_size=20,class_mode='binary')validation_generator = test_datagen.flow_from_directory(validation_dir,target_size=(64, 64),batch_size=20,class_mode='binary')history = model.fit_generator(train_generator,steps_per_epoch=100,  # 2000 images = batch_size * stepsepochs=100,validation_data=validation_generator,validation_steps=50,  # 1000 images = batch_size * stepsverbose=2)

Epoch 100/100
100/100 - 3s - loss: 0.4145 - acc: 0.8145 - val_loss: 0.4269 - val_acc: 0.7830 - 3s/epoch - 33ms/step

在这里插入图片描述
在这里插入图片描述
这效果又提升了一点

http://www.lryc.cn/news/289310.html

相关文章:

  • Unity中URP下额外灯角度衰减
  • BKP备份寄存器、RTC实时时钟
  • k8s 进阶实战笔记 | Scheduler 调度策略总结
  • 微服务-微服务Spring-cloud-open-feign
  • 分类预测 | Matlab实现DT决策树多特征分类预测
  • 随机点名--好玩哦
  • Linux下的进程操作
  • uniapp scroll-view用法[下拉刷新,触底事件等等...](4)
  • 聊聊大模型 RAG 探索之路的血泪史,一周出Demo,半年用不好
  • UniApp 生命周期详解
  • 用大模型训练实体机器人,谷歌推出机器人代理模型
  • HCIA-HarmonyOS设备开发认证-2.设备开发入门
  • 2. HarmonyOS 应用开发 DevEco Studio 准备-2
  • 【K8S 云原生】K8S的图形化工具——Rancher
  • 3. SQL 语言
  • Android音量调节修改
  • 九州金榜|为什么鼓励式家庭教育?
  • Java复习系列之阶段二:数据库
  • TCP 异常断开连接【重点】
  • Biotin-PEG4-TSA,生物素-PEG4-酪胺,用于标记蛋白质、核酸等生物分子
  • Python环境下基于机器学习的NASA涡轮风扇发动机剩余使用寿命RUL预测
  • Vite学习指南
  • 无人机在三维空间中的转动问题
  • 鸿蒙开发初体验
  • 【Axure教程0基础入门】02高保真基础
  • 【GitHub项目推荐--常见的国内镜像】【转载】
  • 实战 | OpenCV+OCR实现弧形文字识别实例(详细步骤 + 源码)
  • 哪些 3D 建模软件值得推荐?
  • AI论文指南|人大教授教你如何利用ChatGPT革新内容分析!【建议收藏】
  • leetcode 字符串相关题目