当前位置: 首页 > news >正文

人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)

人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)

  • FaceNet的简介
  • Facenet的实现思路
  • 训练部分

在这里插入图片描述

FaceNet的简介

在这里插入图片描述

Facenet的实现思路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import torch.nn as nndef conv_bn(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),nn.BatchNorm2d(oup),nn.ReLU6())def conv_dw(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),nn.BatchNorm2d(inp),nn.ReLU6(),nn.Conv2d(inp, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),nn.ReLU6(),)class MobileNetV1(nn.Module):def __init__(self):super(MobileNetV1, self).__init__()self.stage1 = nn.Sequential(# 160,160,3 -> 80,80,32conv_bn(3, 32, 2), # 80,80,32 -> 80,80,64conv_dw(32, 64, 1), # 80,80,64 -> 40,40,128conv_dw(64, 128, 2),conv_dw(128, 128, 1),# 40,40,128 -> 20,20,256conv_dw(128, 256, 2),conv_dw(256, 256, 1),)self.stage2 = nn.Sequential(# 20,20,256 -> 10,10,512conv_dw(256, 512, 2),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),)self.stage3 = nn.Sequential(# 10,10,512 -> 5,5,1024conv_dw(512, 1024, 2),conv_dw(1024, 1024, 1),)self.avg = nn.AdaptiveAvgPool2d((1,1))self.fc = nn.Linear(1024, 1000)def forward(self, x):x = self.stage1(x)x = self.stage2(x)x = self.stage3(x)x = self.avg(x)# x = self.model(x)x = x.view(-1, 1024)x = self.fc(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):  super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述
在pytorch代码中,只需要一行就可以实现l2标准化的层。
在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"): super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

训练部分

在这里插入图片描述

在这里插入图片描述

http://www.lryc.cn/news/289076.html

相关文章:

  • Python tkinter (6) Listbox
  • 优雅的python(二)
  • Git安装详细步骤
  • 首发:2024全球DAO组织发展研究
  • 【大数据】详解 Flink 中的 WaterMark
  • 【数据结构1-2】二叉树
  • ajax点击搜索返回所需数据
  • Redis6基础知识梳理~
  • 在Python中如何使用集合进行元素操作
  • 2024年阿里云幻兽帕鲁Palworld游戏服务器优惠价格表
  • Atlassian Confluence Data Center and Server 权限提升漏洞复现(CVE-2023-22515)
  • 打开 IOS开发者模式
  • 【C语言刷题系列】交换两个变量的三种方式
  • 架构师之路(十五)计算机网络(网络层协议)
  • 【JSON2WEB】03 go的模板包html/template的使用
  • 3 JS类型 值和变量
  • 【Android】实现简易购物车功能(附源码)
  • 使用Excel计算--任务完成总工作日时间段
  • .NET高级面试指南专题一【委托和事件】
  • 基于springboot+vue的在线教育系统(前后端分离)
  • 54-函数的3种定义,函数的4种调用:函数模式调用,方法模式调用,构造函数模式调用,apply call bind调用
  • [C#]winform部署yolov5实例分割模型onnx
  • C++核心编程:类和对象 笔记
  • 机器学习实验3——支持向量机分类鸢尾花
  • R语言【taxlist】——clean():移除孤立的记录
  • CentOS 7.9 OS Kernel Update 3.10 to 4.19
  • k8s---安全机制
  • GitHub 一周热点汇总第7期(2024/01/21-01/27)
  • kotlin data clas 数据类
  • Java基础知识-异常