当前位置: 首页 > news >正文

HBase入门:实现原理

文章目录

  • 说明
  • HBase的实现原理
    • HBase功能组件
    • 表和 Region
    • Region 的定位

说明

  • 本文参考自林子雨老师的《大数据技术原理与应用(第三版)》教材内容,仅供学习和交流

HBase的实现原理

HBase功能组件

  • HBase 的实现包括 3 个主要的功能组件:库函数,链接到每个客户端;一个 Master 主服务器(也称为 Master);多个 Region 服务器。
  • Region 服务器负责存储和维护分配给自己的 Region,处理来自客户端的读写请求。
  • Master 主服务器负责管理和维护HBase 表的分区信息,同时也负责维护 Region 服务器列表。Master 会实时监测集群中的 Region 服务器,把特定的 Region 分配到可用的 Region 服务器上,并确保整个集群内部不同 Region 服务器之间的负载均衡。当某个 Region 服务器因出现故障而失效时,Master 会把该故障服务器上存储的 Region 重新分配给其他可用的 Region 服务器。除此以外,Master 还处理模式变化,如表和列族的创建。
  • 客户端并不是直接从 Master 主服务器上读取数据,而是在获得 Region 的存储位置信息后,直接从 Region 服务器上读取数据。
  • 注意,HBase 客户端并不依赖于 Master 而是借助于 ZooKeeper 来获得 Region 的位置信息的,所以大多数客户端从来不和 Master 主服务器通信,这种设计方式使 Master 的负载很小。

表和 Region

  • 对于每个 HBase 表而言,表中的行是根据行键的值的字典序进行维护的,表中包含的行的数量可能非常庞大,无法存储在一台机器上,需要分布存储到多台机器上。因此,需要根据行键的值对表中的行进行分区。每个行区间构成一个分区,被称为“Region”。
    在这里插入图片描述

  • Region 包含了位于某个值域区间内的所有数据,是HBase负载均衡和数据分发的基本单位。这些 Region 会被分发到不同的 Region 服务器上。

  • 初始时,每个表只包含一个 Region,随着数据的不断插入,Region 会持续增大。当一个 Region中包含的行数量达到一个阈值时,就会被自动等分成两个新的 Region,随着表中行的数量继续增加,就会分裂出越来越多的 Region
    在这里插入图片描述

  • 每个 Region 的默认大小是 100~200 MB。Master主服务器会把不同的 Region 分配到不同的 Region 服务器上,同一个 Region 不会被拆分到多个 Region 服务器上。

  • 每个 Region 服务器负责管理一个 Region 集合,通常在每个 Region服务器上会放置 10~1000 个 Region。
    在这里插入图片描述

Region 的定位

  • 一个 HBase 的表可能非常庞大,会被分裂成很多个 Region,这些 Region 可被分发到不同的Region 服务器上。因此,必须设计相应的 Region 定位机制,保证客户端可以定位所需数据的Region服务器地址
  • 每个 Region 都有一个 RegionID 来标识它的唯一性,一个 Region 标识符就可以表示成“表名+开始主键+RegionID”
  • 为了定位每个 Region 所在的位置,可以构建一张映射表。映射表的每个条目(或每行)包含两项内容,一个是 Region 标识符,另一个是 Region 服务器标识。这个映射表包含了关于 Region 的元数据(即 Region和 Region 服务器之间的对应关系),因此也被称为“元数据表”,又名“.META.表”。
  • 当一个 HBase 表中的 Region 数量非常庞大的时候,.META.表的条目就会非常多,一个服务器保存不下,也需要分区存储到不同的服务器上,因此.META.表也会被分裂成多个 Region。为了定位这些 Region,需要构建新的映射表,记录所有元数据的具体位置,新的映射表就是“根数据表”,又名“-ROOT-表”-ROOT-表不能被分割,永远只存在一个 Region 用于存放-ROOT-表。用来存放-ROOT-表的唯一一个Region,它的名字是在程序中被“写死”的,Master 主服务器永远知道它的位置。
  • HBase 使用类似 B+树的三层结构来保存 Region 位置信息。
    在这里插入图片描述
  • HBase 三层结构中各层次的名称和作用
层次名称作用
第一层ZooKeeper文件记录了-ROOT-表的位置信息
第二层-ROOT-表记录.META.表Region位置信息,-ROOT-表只能有一个 Region,通过-ROOT-表访问.META.表中的数据
第三层.META.表记录用户数据表的Region位置信息,.META.表可以有多个 Region,保存HBase 中所有用户数据表的 Region 位置信息
  • 为了加快访问速度,.META.表的全部 Region 都会被保存在内存中

  • 客户端访问流程:客户端访问用户数据前,首先访问 ZooKeeper,获取-ROOT-表的位置信息,然后访问-ROOT-表,获得.META.表的信息,接着访问.META.表,找到所需的 Region 具体的Region服务器,最后才会到该 Region 服务器读取数据。该过程需要多次网络操作,为加速寻址过程,一般会在客户端把查询过的位置信息缓存起来,访问相同的数据时,直接从客户端缓存中获取 Region 的位置信息,不需要每次都经历一个“三级寻址”过程。

  • 注意:随着 HBase 中表的不断更新,Region 的位置信息可能会发生变化,但是客户端缓存并不会本地检测 Region 位置信息是否失效,而是在需要访问数据时,从缓存中获取 Region 位置信息发现不存在时,才会判断出缓存失效。这时,客户端会再次经历“三级寻址”过程,重新获取最新的 Region 位置信息访问数据,并替换缓存中失效信息。

  • 客户端从 ZooKeeper 服务器上获取-ROOT-表地址后,通过“三级寻址”获取用户数据表所在的 Region 服务器,并直接访问该 Region 服务器获得数据,没有必要再连接Master 主服务器。因此,减轻了Master 主服务器的负载。

http://www.lryc.cn/news/288191.html

相关文章:

  • Redis入门到实战-基础篇+实战篇+高级篇+原理篇
  • redis 工具类
  • 焕新升级,不同以“网” | AnyCase客户端全新上线
  • 导出 MySQL 数据库表结构、数据字典word设计文档
  • conda管理python安装包与虚拟环境的相关命令汇总
  • Vue3引用echart5 报错解决
  • 浅析HTTP协议
  • etcd未授权到控制k8s集群
  • 制作一个简单的HTML个人网站
  • 头歌C语言字符数组
  • 【mongoDB】文档 CRUD
  • 每日一题——LeetCode1337.矩阵中战斗力最弱的K行
  • docker指令存档
  • Pandas ------ 向 Excel 文件中写入含有 multi-index 和 Multi-column 表头的数据
  • ChatGPT 和文心一言 | 两大AI助手哪个更胜一筹
  • flink学习之窗口处理函数
  • Python 基于pytorch从头写GPT模型;实现gpt实战
  • 2023年NOC大赛(学而思赛道)创意编程Python初中组决赛真题
  • 头歌C++之Switch控制语句编程实训
  • CNN卷积理解
  • DataKit迁移MySQL到openGauss
  • Dockerfile里ADD * 保留原来的目录结构
  • C++ 利用容器适配器,仿函数实现栈,队列,优先级队列(堆),反向迭代器,deque的介绍与底层
  • C语言实战系列二:简单超市收银系统
  • coding推送代码Jenkins自动构建部署
  • Kettle-Docker部署+Sqlserver数据同步Mysql+Start定时任务
  • 《微信小程序开发从入门到实战》学习九十三
  • Java服务端使用freemarker+wkhtmltoimage生成Echart图片
  • 一款颜值与实力并存的翻页时钟(免费)
  • Objective-C方法的声明实现及调用