当前位置: 首页 > news >正文

差分进化算法求解基于移动边缘计算 (MEC) 的无线区块链网络的联合挖矿决策和资源分配(提供MATLAB代码)

一、优化模型介绍

在所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner  s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

2.1部分代码

close all
clear 
clc
dbstop if all error
NP = 100;%矿工数量
para = parametersetting(NP);
para.MaxFEs =5000;%最大迭代次数
Result=Compute(NP,para);
figure(1)
plot(Result.FitCurve,'r-','linewidth',2)
xlabel('FEs')
ylabel('Token')
figure(2)
plot(Result.ConCurve,'g-','linewidth',2)
xlabel('FEs')
ylabel('Con')

2.2部分结果

当矿工数量为100时:所有矿工的利润随迭代次数的变化如下图所示
在这里插入图片描述算法得到的资源分配:

1.99763301712028	0.222528597636855
1.98480090600989	0.232003797981878
1.99810737020089	0.516878075461127
1.99450954175327	0.121004799048830
1.98894335292950	0.457573161395314
1.98141441375851	0.764801153373885
1.99123792611056	0.0618336115864624
1.99957268156257	0.121004799048830
1.99869990696838	0.0545812896345451
1.99958167059988	0.555322442727203
1.99842776886770	0.0425674932800246
1.99782546212753	0.556999423219330
1.99781790486039	0.196587806899822
1.99507786088204	0.115226131066544
1.99052235611421	0.245674972808444
1.99670598640193	0.0505531222716088
1.99482731112569	0.570493296084591
1.99736278961552	0.483094177861634
1.98894335292950	0.262561711571175
1.98784689496156	0.0324778719744346
1.98851683245790	0.171964220456218
1.98796386190418	0.110054645825889
1.98418972990049	0.0724358226961023
1.99516235341290	0.0341179120870288
1.99873738363101	0.489382783726158
1.99697974388302	0.0173712437086769
1.98964833679332	0.0320026913839283
1.99751719786278	0.147890074497164
1.99751719786278	0.434936315273999
1.99748331769841	0.232003797981878
1.99960825876476	0.483665232586750
1.99763301712028	0.631745087572258
1.99703599779628	0.358292746434059
1.99528222092061	0.514944354258863
1.99655084169003	0.753834027257007
1.99842776886770	0.940560567187612
1.99836116767571	0.221230559879615
1.99981576341436	0.184249732087410
1.99836116767571	0.0324778719744346
1.99654201611710	0.335915952413277
1.99237903891650	0.155001423906853
1.99760611708088	0.375017552592607
1.99978704361437	0.561786832194378
1.98578574172372	0.0236239899979008
1.99866761178096	0.0324778719744346
1.99763301712028	0.472369465588862
1.99721838438050	0.700915679954801
1.99428564716577	0.157199586550231
1.99655135483398	0.105209390328771
1.94788362094720	0.0258755419701254
1.99449453062393	0.132251896484895
1.99700992290778	0.0898397719008559
1.99965518095321	0.596537124037070
1.99278786910748	0.0256042543513514
1.99957848431148	0.894961847587823
1.99175299365895	0.0890674637434230
1.99750797157559	0.607592532504797
1.99748331769841	0.0724358226961023
1.99260527116064	0.631745087572258
1.99928439965780	0.127930497832236
1.99817708666189	0.104282160660561
1.99421206141539	0.803656147079701
1.98359960108601	0.118868109287597
1.99899700099444	0.518357001275729
1.99528222092061	0.0324778719744346
1.99877098644022	0.665529673319171
1.99763301712028	0.334090268607101
1.99860560539076	0.0866379799536027
1.99979684848517	0.377299990245342
1.99855631180132	0.389679849807951
1.99731236573268	0.434936315273999
1.99696360320736	0.570493296084591
1.99993018378939	0.391296247028955
1.99965327995029	0.287460195344814
1.99979684848517	0.450997212108626
1.99751719786278	0.287460195344814
1.99763301712028	0.155001423906853
1.99783983352391	0.103569288167448
1.99654201611710	0.127930497832236
1.98747116264687	0.0330088002325308
1.99655135483398	0.0797018166113099
1.99108222250111	0.0866379799536027
1.99718273730151	0.662248213795699
1.99869990696838	0.191058236556442
1.99652919147221	0.215505887700011
1.99459957647011	0.140056664895674
1.99806054285466	0.120547231379614
1.98593862830166	0.0916486389328984
1.97931641143295	0.462734428071515
1.99855631180132	0.101120011114003
1.99421206141539	0.258443908859530
1.99781790486039	0.543516910843497
1.99720522726900	0.0737173931186571
1.98303440848516	0.152622777636722
1.99900862513681	0.674526132004626
1.99866761178096	0.358292746434059
1.99783983352391	0.491305146804456
1.99960825876476	0.122579254402338
1.96710953562570	0.0513811784835662
1.99842776886770	0.0112006869294710

三、完整MATLAB代码

http://www.lryc.cn/news/287335.html

相关文章:

  • Tomcat Notes: Web Security, HTTPS In Tomcat
  • 智能小程序登陆能力开发文档及示例代码
  • 常见の算法
  • openssl3.2/test/certs - 041 - 1024-bit leaf key
  • 「创新引领未来」科东软件荣获第十二届中国创新创业大赛(广东·广州赛区)优胜奖
  • Linux下安装 Redis7
  • spire.doc合并word文档
  • 蓝桥杯官网填空题(01串的熵)
  • 【CodeTop】TOP 100 刷题 51-60
  • k8s的图形化工具---rancher
  • npm安装卡住问题(最新版)
  • 什么是线程死锁
  • Django从入门到精通(二)
  • 建筑物防雷检测安全接地应用解决方案
  • 支付宝小程序开发踩坑笔记(支付宝、学习强国小程序)
  • 如何降低微服务复杂度丨云栖大会微服务主题分享实录
  • openresty 安装, nginx与 openresty
  • puppeteer实现截图
  • 【2024Java面试突击】并发编程、线程池面试实战
  • ASUS华硕无畏Pro15笔记本电脑(M6500QB,M6500QH)工厂模式原厂OEM预装Windows11.22H2系统 含Recovery恢复
  • 代码随想录算法训练营第三十天|51. N皇后
  • Kubernetes(K8S)各种攻击方法
  • 【MySQL】内外连接
  • selenium执行出现异常,SessionNotCreatedException ChromeDriver only supports
  • Flink:快速掌握批处理数据源的创建方法
  • 基于cubeMX的正点原子miniSTM32对W25Q64的存储使用
  • C++笔记(三)
  • c语言不定参数
  • 云手机与实体手机的对比
  • diffusion 和 gan 的优缺点对比