当前位置: 首页 > news >正文

LC 2865. 美丽塔 I

2865. 美丽塔 I

难度 : 中等

题目大意

给你一个长度为 n 下标从 0 开始的整数数组 maxHeights

你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i ,高度为 heights[i]

如果以下条件满足,我们称这些塔是 美丽 的:

  1. 1 <= heights[i] <= maxHeights[i]
  2. heights 是一个 山脉 数组。

如果存在下标 i 满足以下条件,那么我们称数组 heights 是一个 山脉 数组:

  • 对于所有 0 < j <= i ,都有 heights[j - 1] <= heights[j]
  • 对于所有 i <= k < n - 1 ,都有 heights[k + 1] <= heights[k]

请你返回满足 美丽塔 要求的方案中,高度和的最大值

提示:

  • 1 <= n == maxHeights <= 10^3
  • 1 <= maxHeights[i] <= 10^9

示例 1:

输入:maxHeights = [5,3,4,1,1]
输出:13
解释:和最大的美丽塔方案为 heights = [5,3,3,1,1] ,这是一个美丽塔方案,因为:
- 1 <= heights[i] <= maxHeights[i]  
- heights 是个山脉数组,峰值在 i = 0 处。
13 是所有美丽塔方案中的最大高度和。

分析

根据数据范围可以知道时间复杂度要控制在 O ( n 2 l o g n ) O(n^2logn) O(n2logn),首先我们要确定这个山脉的中心,也就是说我们可以枚举这个中心,然后去构造这个山脉数组,至于怎么构造,因为确定了中心,所以我们可以枚举左右两边,以左边为例,我们要所得的山脉的高度之和最大,所以我们要尽可能取到最大的山脉高度,也就是说,如果当前山脉的最大高度小于等于右边山脉的高度,我们就可以直接取最大的高度,如果比右边的高度高,那么就只能取和右边的山脉相同的高度,右边是同理的,注意数据范围可能爆int,所以注意开long long

暴力枚举

class Solution {
public:using LL = long long;long long maximumSumOfHeights(vector<int>& maxHeights) {int n = maxHeights.size();LL res = 0;for (int i = 0; i < n; i ++){LL sum = maxHeights[i];LL t = maxHeights[i];// 用t表示当前山脉的限制高度for (int j = i - 1; j >= 0; j --)if (maxHeights[j] <= t) sum += maxHeights[j], t = maxHeights[j];else sum += t;t = maxHeights[i];for (int j = i + 1; j < n; j ++)if (maxHeights[j] <= t) sum += maxHeights[j], t = maxHeights[j];else sum += t;res = max(res, sum);}return res;}
};

时间复杂度 O ( n 2 ) O(n^2) O(n2)

分析

我们确定山峰之后,分析左边,从山峰往左看,根据上面的暴力做法的提示,我们发现,假设当前的山峰maxHeightx,那么如果左边的山脉是高于x的,左边的山脉就会受到限制,那么这个限制什么时候解除呢,碰到一个比x还要小的山脉,而且是第一个,那么我们就可以联想到单调栈的思想,我们可以存下标,我们首先找到受x限制的那一段,终点下标就是栈顶假设是t,那么这一段全部都是x高度,我们定义l[i]表示当前位置为山峰,从i往左看非递增的山脉的高度值和,假设l[i] = l[t] + (i - t) * x(下标从1开始),考虑边界情况,如果左边没有比x小的,那么左边都要受到限制,所以我们可以将栈底始终放一个下标0,这样就方便处理,至于右边的情况,是一样的,我们可以将数组反转一下,然后就是相同的处理

单调栈

class Solution {
public:using LL = long long;long long maximumSumOfHeights(vector<int>& maxHeights) {int n = maxHeights.size();vector<LL> l(n + 1), r(n + 1); // 下标从1开始方便处理边界auto f = [&](vector<LL>& g) {stack<LL> stk;stk.push(0); // 方便处理边界for (int i = 1; i <= n; i ++ ) {while (stk.size() > 1 && maxHeights[stk.top() - 1] >= maxHeights[i - 1]) stk.pop();g[i] = g[stk.top()] + (LL)(i - stk.top()) * maxHeights[i - 1];stk.push(i);}};f(l), reverse(maxHeights.begin(), maxHeights.end()), f(r);LL res = 0;for (int i = 1; i <= n; i ++) {res = max(res, l[i] + r[n - i + 1] - maxHeights[n - i]); // 注意此时数组已经反转了,所以下标要注意}return res;}
};

时间复杂度: O ( n ) O(n) O(n)

结束了

http://www.lryc.cn/news/287171.html

相关文章:

  • 代理设计模式JDK动态代理CGLIB动态代理原理
  • [陇剑杯 2021]webshell
  • 美易官方:小米汽车交付时间传闻被官方辟谣
  • MySQL 简介
  • 动态规划最后一天(回文串)
  • c语言之scanf函数
  • ORM-02-JPA Java Persistence API 注解入门介绍
  • 【MQ01】什么是消息队列?用哪个消息队列?
  • 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型
  • 【Flink-CDC】Flink CDC 介绍和原理概述
  • 长城资产信息技术岗24届校招面试面经
  • 【计算机网络】TCP握手与挥手:三步奏和四步曲
  • 设计模式学习总结
  • 「HDLBits题解」Cellular automata
  • 什么是API ?
  • Pytest中conftest.py的用法
  • java.lang.IllegalArgumentException: When allowCredentials is true
  • vue折叠展开transition动画使用keyframes实现
  • 书生·浦语大模型实战营-学习笔记5
  • 10. Profile
  • YOLO 自己训练一个模型
  • 3.Eureka注册中心
  • 基于springboot+vue的墙绘产品展示交易平台系统(前后端分离)
  • 网络原理-初识(1)
  • 【GitHub项目推荐--人脸识别】【转载】
  • NLP自然语言处理介绍
  • 在线WebOffce在HTML/VUE/Electron纯前端网页编辑Office之打开Word后自动处于修订模式
  • thinkphp+vue+mysql旅游推荐攻略分享网站p0667
  • 华为系统底层是用Java写的吗?和安卓的区别?
  • sql server 修改表前 先判断是否有这个列