当前位置: 首页 > news >正文

深度学习(3)--递归神经网络(RNN)和词向量模型Word2Vec

目录

一.递归神经网络基础概念

二.自然语言处理-词向量模型Word2Vec

2.1.词向量模型

2.2.常用模型对比

2.3.负采样方案

2.4.词向量训练过程


一.递归神经网络基础概念

递归神经网络(Recursive Neural Network, RNN)可以解决有时间序列的问题,处理诸如树、图这样的递归结构。

CNN主要应用在计算机视觉CV中,RNN主要应用在自然语言处理NLP中。

1.h0,h1.....ht对应的是不同输入得到的中间结果。

2.处理自然语言I am GodFishhh or AFish:

则对应的输入为X0 -- I,X1 -- am,X2 -- GodFishhh,X3 -- or,X4 -- AFish,再通过一定的方法将自然语言输入转换为计算机能够理解的形式(例如Word2Vec方法,将文本中的词语转换为向量形式)。

3.RNN网络最后输出的结果会考虑之前所有的中间结果,记录的数据太多可能会产生误差或者错误。

LSTM长短记忆网络是一种特殊的递归神经网络,可以解决上述记录数据太多的问题:

在普通的RNN中,t-1时刻得到的输出值h(t-1)会被简单的复制到t时刻,并与t时刻的输入值X(t)整合再经过一个tanh函数后形成输出。

而在LSTM中,对于t-1时刻得到的输出值h(t-1)会有更加复杂的操作。

二.自然语言处理-词向量模型Word2Vec

2.1.词向量模型

将文本向量化后,就可以通过不同方法(欧氏距离、曼哈顿距离、切比雪夫距离、余弦相似度等)来计算两个向量之间的相似度。

同时通常来说,向量的维度越高,能够提供的信息也越多,因此所计算出的相似度的可靠性也就越高,匹配的正确性也就越高(常用向量维度为50~300)

而词向量模型Word2Vec的作用就是把词转化为向量

例如如下训练好的词向量,将每一个词都表示为50维的向量:

通过比对不同词向量的热度图可以发现,有相关特性的词在热度图上较为相似,而无明显相关特性的词在热度图上则差异较大:

在词向量模型中,输入可以是多个词,而在模型的最后一层中连接了SoftMax,所以会输出所有词可能是下一个词的概率。

而文字的输入则是通过一个embeddings层(词嵌入层)来解决。在神经网络初始化时,会随机初始化一个N×K的矩阵,其中N为词典的大小,K为词向量的维度数。初始的词嵌入曾是随机生成的,通过反向传播进行更新优化。

2.2.常用模型对比

一切具有正常逻辑的语句都可以作为训练数据。

(1).CBOW模型

CBOW的全称是continuous bag of words(连续词袋模型)。其本质也是通过context word(背景词)来预测target word(目标词)。

该模型的输入为上下文,输出为该上下文中间的词汇:


 

(2).Skip-gram模型

该模型与CBOW模型相反,模型的输入为一个词汇,而输出是该词汇的上下文:

 示例:

2.3.负采样方案

如下图所示,将构建好的数据集丢给词模型进行训练:

发现最后一层SoftMax的计算在语料库很大的情况下会非常耗时。

因此,有一种改进方法是将此时的输入和输出都作为输入值,做一个二分类问题,如果两个输入是邻居则输出1,不是邻居则输出0。(eg.传统模型中,输入not,希望输出是thou,但需要经过SoftMax层计算出所有词可能作为下一个词的概率,但此时则是将not和thou均作为输入,如果相邻则输出1,不相邻则输出0)

 

但此时的问题在于,训练集本身就是由上下文构建出来的,所以训练集构建出来的输出targer均为1,无法进行较好的训练。

改进方案:加入一些负样本,即不相邻的两个输入词,输出的target值为0.(一般负样本个数为5个左右) 

2.4.词向量训练过程

(1).初始化词向量矩阵

(2).训练模型

通过神经网络反向传播来训练模型,与普通的训练模型只更新权重值不同,此时不光会更新权重参数矩阵,还会更新输入数据。

http://www.lryc.cn/news/286507.html

相关文章:

  • 【江科大】STM32:中断系统(理论)
  • JAVA 学习 面试(六)数据类型与方法
  • Java 一个数组集合List<People> 赋值给另一个数组集合List<NewPeople> ,两个数组集合属性部分一致。
  • 基于神经网络的电力系统的负荷预测
  • OpenCV第 1 课 计算机视觉和 OpenCV 介绍
  • C++面试:stl的栈和队列介绍
  • 从0开始学习C++ 第十二课:指针强化
  • mongodb和python交互
  • 力扣279. 完全平方数
  • 【C++】list容器功能模拟实现
  • linux 安装ffmpeg
  • 激光雷达行业梳理2-产业链、公司、未来展望
  • Java 设计者模式以及与Spring关系(四) 代理模式
  • PHP编程实践:实际商品价格数据采集
  • 有效防范网络风险的关键措施
  • Spring Boot整合webservice
  • Qt拖拽事件简单实现
  • 上门回收小程序,打造回收新模式
  • unity项目《样板间展示》开发:火焰和UI设计
  • 即插即用篇 | UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大卷积神经网络 | DRepConv
  • MPU6050传感器—姿态检测
  • PaddleOCR封装,在线服务化部署实战(python部署,超新手教程)
  • 采集B站up主视频信息
  • Laykefu客服系统 任意文件上传漏洞复现
  • 《幻兽帕鲁》服务器该如何选购
  • 比较有创意的网站
  • alfred自定义谷歌翻译workflow
  • 【网络安全 -> 防御与保护】专栏文章索引
  • 用户资源(菜单)控制学习使用
  • 邦芒支招:十大秘诀助你轻松进名企