当前位置: 首页 > news >正文

【ARMv8M Cortex-M33 系列 7 -- RA4M2 移植 RT-Thread 问题总结】


请阅读【嵌入式开发学习必备专栏 】


文章目录

    • 问题小结
      • 栈未对齐

经过几天的调试,成功将rt-thead 移植到 RA4M2(Cortex-M33 核)上,thread 和 shell 命令已经都成功支持。
在这里插入图片描述

问题小结

在完成 rt-thread 代码 Makefile 编译系统搭建后,就开始着手 rt-thread OS 的移植,不幸的是开始就遇到了问题:cortex-m33/context_gcc.S在退出 PendSV_Handler的时候发生了 HardFault_Handler,由于没有打印信息也不知道是什么原因导致 hardfault, 此外由于很久没有调试Cortex-M系列的core了,也不知道去查看哪些寄存器来分析错误原因?

栈未对齐

Memory zones:Zone: "Default" Description: Default access mode
Cortex-M33 identified.
J-Link>h
PC = 000002EC, CycleCnt = 003535BF
R0 = 20000C50, R1 = 20001A28, R2 = 00000000, R3 = 00000003
R4 = 00000000, R5 = FFFFFFBC, R6 = 00000000, R7 = 00000000
R8 = DEADBEEF, R9 = DEADBEEF, R10= DEADBEEF, R11= DEADBEEF
R12= 00000002
SP(R13)= 20000C28, MSP= 20000C28, PSP= 20001A28, R14(LR) = FFFFFFFD
XPSR = 2900000E: APSR = nzCvQ, EPSR = 01000000, IPSR = 00E (PendSV)
CFBP = 00000000, CONTROL = 00, FAULTMASK = 00, BASEPRI = 00, PRIMASK = 00
MSPLIM = 20000848
PSPLIM = 00000000Security extension regs:
MSP_S = 20000C28, MSP_NS = 00000000
MSPLIM_S = 20000848, MSPLIM_NS = 00000000
PSP_S = 20001A28, PSP_NS = 1F36C7B0
PSPLIM_S = 00000000, PSPLIM_NS = 00000000
CONTROL_S  = 00, FAULTMASK_S  = 00, BASEPRI_S  = 00, PRIMASK_S  = 00
CONTROL_NS = 00, FAULTMASK_NS = 00, BASEPRI_NS = 00, PRIMASK_NS = 00FPS0 = 00000000, FPS1 = 00000000, FPS2 = 00000000, FPS3 = 00000000
FPS4 = 00000000, FPS5 = 00000000, FPS6 = 00000000, FPS7 = 00000000
FPS8 = 00000000, FPS9 = 00000000, FPS10= 00000000, FPS11= 00000000
FPS12= 00000000, FPS13= 00000000, FPS14= 00000000, FPS15= 00000000
FPS16= 00000000, FPS17= 00000000, FPS18= 00000000, FPS19= 00000000
FPS20= 00000000, FPS21= 00000000, FPS22= 00000000, FPS23= 00000000
FPS24= 00000000, FPS25= 00000000, FPS26= 00000000, FPS27= 00000000
FPS28= 00000000, FPS29= 00000000, FPS30= 00000000, FPS31= 00000000
FPSCR= 00000000
J-Link>mem32 0x20001a18 16
20001A18 = DEADBEEF DEADBEEF DEADBEEF DEADBEEF
20001A28 = DEADBEEF DEADBEEF DEADBEEF DEADBEEF
20001A38 = 00000000 00000000 00000000 00000000
20001A48 = 00000000 00000AAD 0000055D 01000000
20001A58 = C9EC9E68 000005A9 1F58CD19 ABFBE429
20001A68 = 1D0D6F06 117A1FBC
J-Link>mem32 0x20001a08 16
20001A08 = 00000000 FFFFFFBC 00000000 00000000
20001A18 = DEADBEEF DEADBEEF DEADBEEF DEADBEEF
20001A28 = DEADBEEF DEADBEEF DEADBEEF DEADBEEF
20001A38 = 00000000 00000000 00000000 00000000
20001A48 = 00000000 00000AAD 0000055D 01000000
20001A58 = C9EC9E68 000005A9
J-Link>

cortex-m33/cpuport.c

rt_uint8_t *rt_hw_stack_init(void       *tentry,void       *parameter,rt_uint8_t *stack_addr,void       *texit)
{struct stack_frame *stack_frame;rt_uint8_t         *stk;unsigned long       i;stk  = stack_addr + sizeof(rt_uint32_t);stk  = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8);stk -= sizeof(struct stack_frame);stack_frame = (struct stack_frame *)stk;/* init all register */for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++){((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef;}stack_frame->exception_stack_frame.r0  = (unsigned long)parameter; /* r0 : argument */stack_frame->exception_stack_frame.r1  = 0;                        /* r1 */stack_frame->exception_stack_frame.r2  = 0;                        /* r2 */stack_frame->exception_stack_frame.r3  = 0;                        /* r3 */stack_frame->exception_stack_frame.r12 = 0;                        /* r12 */stack_frame->exception_stack_frame.lr  = (unsigned long)texit;     /* lr */stack_frame->exception_stack_frame.pc  = (unsigned long)tentry;    /* entry point, pc */stack_frame->exception_stack_frame.psr = 0x01000000L;              /* PSR */stack_frame->tz = 0x00;stack_frame->lr = 0xFFFFFFBC;stack_frame->psplim = 0x00;stack_frame->control = 0x00;/* return task's current stack address */return stk;

栈结构:

struct exception_stack_frame
{rt_uint32_t r0;rt_uint32_t r1;rt_uint32_t r2;rt_uint32_t r3;rt_uint32_t r12;rt_uint32_t lr;rt_uint32_t pc;rt_uint32_t psr;
};struct stack_frame
{rt_uint32_t tz;rt_uint32_t lr;rt_uint32_t psplim;rt_uint32_t control;/* r4 ~ r11 register */rt_uint32_t r4;rt_uint32_t r5;rt_uint32_t r6;rt_uint32_t r7;rt_uint32_t r8;rt_uint32_t r9;rt_uint32_t r10;rt_uint32_t r11;struct exception_stack_frame exception_stack_frame;
};

具体内容待补充…
TODO

http://www.lryc.cn/news/285930.html

相关文章:

  • 分享 GitHub 上的敏感词汇工具类:sensitive-word
  • 洛谷P1319 压缩技术(C语言)
  • HQL,SQL刷题简单查询,基础,尚硅谷
  • MSG3D
  • kafka(二)——常用命令
  • 使用Flink处理Kafka中的数据
  • 跟着pink老师前端入门教程-day07
  • Pixelmator Pro Mac版 v3.5 图像处理软件 兼容 M1/M2
  • 《吐血整理》进阶系列教程-拿捏Fiddler抓包教程(15)-Fiddler弱网测试,知否知否,应是必知必会
  • 【vscode】远程资源管理器自动登录服务器保姆级教程
  • 写点东西《Javascript switch 语句的替代方法》
  • python学习笔记10(循环结构2)
  • Codefroces 191A - Dynasty Puzzles
  • HIVE中关联键类型不同导致数据重复,以及数据倾斜
  • CRM系统是如何解决企业的痛点的?
  • 系统架构14 - 软件工程(2)
  • vue封装接口
  • Dell戴尔XPS 8930笔记本电脑原装Win10系统 恢复出厂预装OEM系统
  • elasticsearch的拼音分词器安装
  • 2024阿里云优惠,云服务器61元一年起
  • 基于SpringBoot+Vue实现的社区养老管理平台(源码+数据库脚本+设计文档+部署视频)
  • 【漏洞复现】CloudPanel makefile接口远程命令执行漏洞(CVE-2023-35885)
  • 【Spring Boot 3】【Redis】集成Redisson
  • YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)
  • 理解反向代理
  • Haar小波下采样模块
  • k8s的包管理工具helm
  • 《WebKit 技术内幕》学习之八(1):硬件加速机制
  • 【Linux对磁盘进行清理、重建、配置文件系统和挂载,进行系统存储管理调整存储结构】
  • RT-DETR算法优化改进:DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测