当前位置: 首页 > news >正文

Codeforces Round 768 (Div. 1) D. Flipping Range(思维题 等价类性质 dp)

题目

思路来源

官方题解

洛谷题解

题解

可操作的最短区间长度肯定是gcd,记为g,然后考虑如何dp

考虑g个等价类,每个等价类i,i+g,i+2*g,...

每次翻转长度为g的区间,会同时影响到g个等价类总的翻转的奇偶性,

性质一:只有每个等价类翻的次数奇偶性相同才合法 

性质二:此外,翻1-g和翻2-g+1可以起到翻(1,g+1)效果

等价类内翻两个相邻的,可以类似地叠加成两个不相邻的,推广为(i,i+x*g)

即等价类内如果有偶数个负数,可以两两翻完,奇数个负数,可以剩一个

此外,可以一开始翻一次[1,g],改变每个等价类内负数个数的奇偶性,所以两种情况都考虑

也就是考虑将所有数都翻成正数,

然后按是否操作一次[1,g],决定在等价类内负数个数为奇/偶时将绝对值最小的数回退掉,减掉2倍mn

这就是性质解法

而dp做法,则是注意到性质一后dp即可,dp[i][j]表示i的等价类的数总共被翻了奇/偶次

枚举当前数翻还是不翻,翻的话加1次翻,算-a[i],否则加0次翻,算a[i],

对每个等价类内dp值求和,取翻奇/偶次二者的max

代码1(性质)

// Problem: D. Flipping Range
// Contest: Codeforces - Codeforces Round 768 (Div. 1)
// URL: https://codeforces.com/contest/1630/problem/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
typedef long long ll;
typedef double db;
typedef pair<ll,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define scll(a) scanf("%lld",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=1e6+10;
int t,n,m,g,v,a[N];
ll dp[N][2];
//考虑等价类 当前等价类内被翻了奇/偶次 只有每个等价类翻的次数奇偶性相同才合法 
//翻1-k和翻2-k+1可以起到翻(1,k+1)效果 类似地 可以翻(i,i+x*k)
void sol(){sci(n),sci(m);	ll all=0;rep(i,0,n-1){sci(a[i]);all+=abs(a[i]);}int g=0;rep(i,1,m){sci(v);g=__gcd(g,v);}ll sum1=0,sum2=0;rep(i,0,g-1){int mn=2e9,cnt=0;for(int j=i;j<n;j+=g){mn=min(mn,abs(a[j]));cnt+=(a[j]<0);}if(cnt&1)sum1+=mn;else sum2+=mn;}printf("%lld\n",all-2ll*min(sum1,sum2));
}
int main(){sci(t); // t=1while(t--){sol();}return 0;
}

代码2(dp)

// Problem: D. Flipping Range
// Contest: Codeforces - Codeforces Round 768 (Div. 1)
// URL: https://codeforces.com/contest/1630/problem/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
typedef long long ll;
typedef double db;
typedef pair<ll,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define scll(a) scanf("%lld",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=1e6+10;
int t,n,m,g,v,a[N];
ll dp[N][2];
//考虑等价类 当前等价类内被翻了奇/偶次 只有每个等价类翻的次数奇偶性相同才合法 
//翻1-k和翻2-k+1可以起到翻(1,k+1)效果 类似地 可以翻(i,i+x*k)
void sol(){sci(n),sci(m);	rep(i,0,n-1){sci(a[i]);}int g=0;rep(i,1,m){sci(v);g=__gcd(g,v);}ll sum1=0,sum2=0;rep(i,0,g-1){dp[i][0]=0;dp[i][1]=-2e9;for(int j=i;j<n;j+=g){ll x1=dp[i][0],x2=dp[i][1];dp[i][0]=max(x1+a[j],x2-a[j]);dp[i][1]=max(x1-a[j],x2+a[j]);}sum1+=dp[i][0];sum2+=dp[i][1];}printf("%lld\n",max(sum1,sum2));
}
int main(){sci(t); // t=1while(t--){sol();}return 0;
}

http://www.lryc.cn/news/280761.html

相关文章:

  • springboot集成kafka消费数据
  • 单例模式---JAVA
  • maven管理使用
  • 如何在一个系统中同时访问异构的多种数据库
  • 半监督学习 - 半监督聚类(Semi-Supervised Clustering)
  • 实现STM32烧写程序-(3) Hex文件结构
  • 精品量化公式——“区域突破”,应对当下行情较好的主图看盘策略
  • 自然语言处理5——发掘隐藏规律 - Python中的关联规则挖掘
  • 【记录】重装系统后的软件安装
  • Android 13 - Media框架(31)- ACodec(七)
  • 快速了解VR全景拍摄技术运用在旅游景区的优势
  • 分布形态的度量_峰度系数的探讨
  • HCIP 重发布
  • FX图中的节点代表什么操作
  • 【Java 设计模式】创建型之单例模式
  • FlinkAPI开发之窗口(Window)
  • 【Unity】Joystick Pack摇杆插件实现锁四向操作
  • 29 旋转工具箱
  • WeNet2.0:提高端到端ASR的生产力
  • 第九部分 使用函数 (四)
  • 一文读懂「Prompt Engineering」提示词工程
  • 微信小程序(一)简单的结构及样式演示
  • 【设计模式】外观模式
  • 优先级队列(Priority Queue)
  • 12-桥接模式(Bridge)
  • Zookeeper+Kafka概述
  • 架构师 - 架构师是做什么的 - 学习总结
  • 全链路压测方案(一)—方案调研
  • c++关键字const
  • 分布式计算平台 Hadoop 简介