当前位置: 首页 > news >正文

【机器学习前置知识】狄利克雷分布

在阅读本文前,建议先食用以下几篇文章以能更好地理解狄利克雷分布:

二项分布

Beta分布

多项分布

共轭分布

狄利克雷分布

狄利克雷分布(Dirichlet distribution)是Beta分布的扩展,把Beta分布从二元扩展到多元形式就是狄利克雷分布,Beta分布是狄利克雷分布的二元特例。

在共轭方面,可以类比Beta分布与二项分布的关系,狄利克雷分布是多项分布的共轭分布,因此狄利克雷分布常作为多项分布的先验分布使用,它是多项分布似然的共轭先验。

狄利克雷分布本质上是多元连续型随机变量的概率密度分布,假设多元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 服从参数 α = ( α 1 , α 2 , . . . , α k ) \alpha=(\alpha _1,\alpha _2,...,\alpha _k) α=(α1,α2,...,αk) 的狄利克雷分布,记作 θ ∽ D i r ( α ) θ \backsim Dir(\alpha) θDir(α) ,则概率密度函数可表示为:

p ( θ ∣ α ) = Γ ( ∑ i = 1 k α i ) ∏ i = 1 k Γ ( α i ) ∏ i = 1 k θ i α i − 1 = 1 B ( α ) ∏ i = 1 k θ i α i − 1 ( 1 ) p(θ|\alpha)={\Gamma(\sum_{i=1}^k{\alpha _i})\over{\prod_{i_=1}^k\Gamma(\alpha _i)}}\prod_{i=1}^k θ_i^{\alpha_{i-1}}={1\over{B(\alpha)}}\prod_{i=1}^k θ_i^{\alpha_{i-1}} \ \ \ \ \ (1) p(θα)=i=1kΓ(αi)Γ(i=1kαi)i=1kθiαi1=B(α)1i=1kθiαi1     (1)

其中, ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 θ i ≥ 0 θ_i \geq 0 θi0 α i > 0 \alpha_i > 0 αi>0

初识者对式 ( 1 ) (1) (1) 可能不明就里,我们来对它做个通俗的解释。

在二项分布和Beta分布中我们曾以抛硬币举例,因为他们只涉及到二元变量,硬币的正反面就可以表示。

在多项分布里面用的是骰子举例,狄利克雷分布也同样可以效仿之。

假设有个生产骰子的工厂,这个工厂技术精湛且先进,不仅能造出一般的质地均匀的六面骰子,甚至可以造出任意质地任意多个面的骰子,这里质地均匀指的是骰子掷出每个面的概率相同,任意质地指掷出每个面的概率不同(但和为1)。在此背景下,狄利克雷分布中的 k k k 元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 可以看作掷一枚这个工厂生产的具有 k k k 个面的骰子时, 每个面出现的概率;参数 α = ( α 1 , α 2 , . . . , α k ) \alpha=(\alpha _1,\alpha _2,...,\alpha _k) α=(α1,α2,...,αk) 可以看作掷 n n n 次骰子中, k k k 个面中每个面出现的次数,并且满足 ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 ∑ i = 1 k α i = n \sum_{i=1}^k\alpha_i=n i=1kαi=n

因为 θ θ θ 满足 ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 θ i ≥ 0 θ_i \geq 0 θi0 ,可以说狄利克雷分布的 k k k 元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 是定义在 k − 1 k-1 k1 维概率单纯形(K-dimentional probability simplex)上的 。 k k k 维单纯形就是具有 k + 1 k+1 k+1 个顶点的凸多面体,比如二维单纯形是个三角形、有三个顶点;三维单纯形是四面体、有四个顶点。 k k k 表示类别的数量,概率单纯形上的一个点可以用 k k k 个和为1的非负数表示。比如当 k = 3 k=3 k=3 时, θ 1 、 θ 2 、 θ 3 θ_1、θ_2、θ_3 θ1θ2θ3 分布在三维空间 z = 1 − x − y z=1-x-y z=1xy 的平面三角形上,是个二维单纯形。


在这里插入图片描述


http://www.lryc.cn/news/280209.html

相关文章:

  • Spring Retry(方法重试、方法重新调用)
  • JavaScript音视频,使用JavaScript如何在浏览器录制电脑摄像头画面为MP4视频文件并下载视频文件到本地
  • IaC基础设施即代码:使用Terraform 连接 alicloud阿里云
  • Vue3 如何使用移动端调试工具vConsole
  • 【物流管理系统-Python简易版】
  • Vue学习笔记六--Vue3学习
  • 21.在线与离线MC强化学习简介
  • 控制网页的灰度显示
  • 科研绘图(四)火山图
  • 超强站群系统v9.0:最新蜘蛛池优化技术,一键安装,内容无缓存刷新,高效安全
  • torch.fx的极简通用量化教程模板
  • rpc的正确打开方式|读懂Go原生net/rpc包
  • 【信号与系统】【北京航空航天大学】实验二、连续时间系统的时域分析【MATLAB】
  • 【Linux 内核源码分析笔记】系统调用
  • mysql清空并重置自动递增初始值
  • 计算机算法之二分算法
  • 获取当前设备的IP
  • koa2文件的上传下载功能
  • test-02-test case generate 测试用例生成 EvoSuite 介绍
  • 1.单表查询
  • FFmpeg 的使用与Docker安装流媒体服务器
  • Qt QListWidget列表框控件
  • 小知识分享2
  • 【Golang开源项目】Golang高性能内存缓存库BigCache设计与分析
  • Elasticsearch 7.8.0从入门到精通
  • 寻找最富裕的小家庭 - 华为OD统一考试
  • ssm基于Java的药店药品信息管理系统的设计与实现论文
  • Word插件-大珩助手-手写电子签名
  • Edge扩展插件安装位置
  • Git将本地项目上传到Gitee仓库