当前位置: 首页 > news >正文

用通俗易懂的方式讲解:一文讲透主流大语言模型的技术原理细节

大家好,今天的文章分享三个方面的内容:

  • 1、比较 LLaMA、ChatGLM、Falcon 等大语言模型的细节:tokenizer、位置编码、Layer Normalization、激活函数等。

  • 2、大语言模型的分布式训练技术:数据并行、张量模型并行、流水线并行、3D 并行、零冗余优化器 ZeRO、CPU 卸载技术 ZeRo-offload、混合精度训练、激活重计算技术、Flash Attention、Paged Attention。

  • 3、大语言模型的参数高效微调技术:prompt tuning、prefix tuning、adapter、LLaMA-adapter、 LoRA。

本文内容较长,喜欢可以收藏、点赞、关注。

目录

      • 用通俗易懂的方式讲解系列
      • 技术交流
      • 0. 大纲
      • 1. 大语言模型的细节
        • 1.0 transformer 与 LLM
        • 1.1 模型结构
        • 1.2 训练目标
        • 1.3 tokenizer
        • 1.4 位置编码
        • 1.5 层归一化
        • 1.6 激活函数
        • 1.7 Multi-query Attention 与 Grouped-query Attention
        • 1.8 并行 transformer block
        • 1.9 总结-训练稳定性
      • 2. LLM 的分布式预训练
        • 2.0 点对点通信与集体通信
        • 2.1 数据并行
        • 2.2 张量并行
        • 2.3 流水线并行
        • 2.4 3D 并行
        • 2.5 混合精度训练
        • 2.6 激活重计算
        • 2.7 ZeRO,零冗余优化器
        • 2.8 CPU-offload,ZeRO-offload
        • 2.9 Flash Attention
        • 2.10 vLLM: Paged Attention
      • 3. LLM 的参数高效微调
        • 3.0 为什么进行参数高效微调?
        • 3.1 prompt tuning
        • 3.2 prefix tuning
        • 3.3 adapter
        • 3.4 LLaMA adapter
        • 3.5 LoRA
        • 3.6 实验比较

用通俗易懂的方式讲解系列

  • 用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库
  • 用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程
  • 用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain
  • 用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库
  • 用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结
  • 用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调)
  • 用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了
  • 用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理
  • 用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南
  • 用通俗易懂的方式讲解:大模型训练过程概述
  • 用通俗易懂的方式讲解:专补大模型短板的RAG
  • 用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践
  • 用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践

技术交流

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

建立了大模型技术交流群,大模型学习资料、数据代码、技术交流提升, 均可加知识星球交流群获取,群友已超过2000人,添加时切记的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2060,备注:技术交流

0. 大纲

图片

1. 大语言模型的细节

1.0 transformer 与 LLM

图片

1.1 模型结构

图片

1.2 训练目标

图片

1.3 tokenizer

图片

1.4 位置编码

图片

1.5 层归一化

图片

1.6 激活函数

图片

1.7 Multi-query Attention 与 Grouped-query Attention

图片

1.8 并行 transformer block

图片

1.9 总结-训练稳定性

图片

2. LLM 的分布式预训练

图片

2.0 点对点通信与集体通信

图片

2.1 数据并行

图片

2.2 张量并行

图片

图片

2.3 流水线并行

图片

2.4 3D 并行

图片

2.5 混合精度训练

图片

2.6 激活重计算

图片

2.7 ZeRO,零冗余优化器

图片

2.8 CPU-offload,ZeRO-offload

图片

2.9 Flash Attention

图片

2.10 vLLM: Paged Attention

图片

3. LLM 的参数高效微调

3.0 为什么进行参数高效微调?

图片

3.1 prompt tuning

图片

3.2 prefix tuning

图片

3.3 adapter

图片

3.4 LLaMA adapter

图片

3.5 LoRA

图片

3.6 实验比较

图片

4. 参考文献

图片

http://www.lryc.cn/news/279425.html

相关文章:

  • 通过IP地址识别风险用户
  • 汇编和C语言转换
  • 【IOS】惯性导航详解(包含角度、加速度、修正方式的api分析)
  • Self-Attention
  • 网络协议与攻击模拟_04ICMP协议与ICMP重定向
  • pytest-mock 数据模拟
  • 单片机原理及应用:定时器/计数器综合应用
  • R语言【paleobioDB】——pbdb_intervals():通过参数选择,返回多个地层年代段的基本信息
  • 阅读笔记lv.1
  • 小鼠的滚动疲劳仪-转棒实验|ZL-200C小鼠转棒疲劳仪
  • 平衡搜索二叉树(AVL树)
  • 2024年1月12日学习总结
  • PCL 使用克拉默法则进行四点定球(C++详细过程版)
  • 前端导致浏览器奔溃原因分析
  • 力扣:209.长度最小的子数组
  • 常见类型的yaml文件如何编写?--kind: Service
  • linux环境下安装postgresql
  • 专业课145+合肥工业大学833信号分析与处理考研经验合工大电子信息通信
  • FreeRtos Queue (一)
  • 深入理解 Hadoop (五)YARN核心工作机制浅析
  • 优化 - 重构一次Mysql导致服务器的OOM
  • 【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析
  • 0104 AJAX介绍
  • 代码随想录算法训练营第24天 | 理论基础 77. 组合
  • 【深度学习环境搭建】Windows搭建Anaconda3、已经Pytorch的GPU版本
  • 基于WebFlux的Websocket的实现,高级实现自定义功能拓展
  • 使用 LLVM clang C/C++ 编译器编译 OpenSSL 3.X库
  • 【信息安全】hydra爆破工具的使用方法
  • uniapp中uview组件库丰富的CountTo 数字滚动使用方法
  • inflate流程分析