当前位置: 首页 > news >正文

无代码DIY图像检索

软件环境准备

    可参见《HuggingFists-低代码玩转LLM RAG-准备篇》中的HuggingFists安装及Milvus安装。

流程环境准备

图片准备

  • 进入HuggingFists内置的文件系统,数据源->文件系统->sengee_fs_settings_201
  • 创建Image文件夹
  • 将事先准备的多张相同或不同种类的图片上传到Image目录下。如下图:

HuggingFace账号准备

    HuggingFists系统没有提供内置的Hugging Face账号,所以用户需要先去申请一个Hugging Face账号。用户可通过链接https://Hugging Face.co/join注册账号。注册成功后,通过界面右上角的个人信息->Settings->Access Tokens申请一个专属的访问令牌。

    其次,在HuggingFists右上角的个人信息->个人设置->资源账号中添加一个Hugging Face访问账号。进入资源账号界面后,选择添加资源账号,弹出如下的界面:

    选中Hugging Face类型,并将申请到的访问令牌填充进“访问token”输入框,填充完成后提交,创建成功。

Embedding算法准备

    在HuggingFace网站中搜索支持Image Embedding的模型,如下图。本文选中的模型为radames/blip_image_embeddings。该模型生成的向量的长度为1024,使用Milvus创建向量集合时需将向量字段的长度设置为1024。

向量环境准备

    可参见《HuggingFists-低代码玩转LLM RAG-准备篇》中的添加Milvus数据源何创建Milvus表的相关章节。

图像入库流程构建

    进入流程管理,新建Image-Writer流程。拖拽并配置文件输入、Milvus写出及HuggingFaceImageEmbedding算子构建图像入库流程。

文件输入

    如下图所示,将流程准备阶段创建的存放图片的image文件夹加入文件输入配置。

HuggingFaceImageEmbedding

    为HuggingFace图像嵌入算子设置访问代理、访问账号以及我们在环境准备阶段选好的图嵌入模型。设置内容如下:

Milvus写出

    为Milvus写出算子指定通过前序准备环节创建的数据源milvus和数据表image02。设置HuggingFace图像嵌入算子与image02表字段的映射关系。streamName字段写入image02的name字段;embeddings字段写入image02的embedding字段。

流程执行

    流程构建完毕,点击执行流程。执行结果如下:

    环境准备时,我们准备了3张图片。执行结果看,流程读入了3张图片,并且写入Milvus3条记录,流程被正确运行了。为了验证这种插入检索到有效性,下面我们在构建一个图检索流程。

图像检索流程构建

    新建Image-Reader流程。拖拽并配置文件输入、HuggingFaceImageEmbedding及Milvus读取算子。

文件输入

    配置方式与图像入库流程中的文件输入相同,唯一差别是,这次我们只选择一张图片作为输入。这张图片是以图01作为基础截取了一部分构成的图。我们打算以这张图作为检索条件。

HuggingFaceImageEmbedding

    配置同上

Milvus读取

    为Milvus读取算子指定数据源milvus。编写如下查询语句:

select  *  from image02 where vMatch(embedding, 'L2', '[@{embeddings}]') and consistencyLevel('STRONG') and nProbe(10) limit 5

     由于Milvus本身不支持SQL的访问方式,所以这里使用的是基于开源项目MOQL对Milvus支持的语法格式。上面的SQL语句中使用了@{embeddings}变量,该变量表示上下文变量,上下文变量可以与算子的输入列做绑定映射。HuggingFaceImageEmbedding算子有一个名为embeddings的列输出到Milvus读取算子,故从配置中可以看到,变量embeddings与输入的embeddings列做了映射绑定。运行时,变量会被输入列的值替换掉,从而生成可运行的SQL语句。当输入为多条记录时,每条记录都会驱动一次SQL的生成与检索。

流程执行

    流程构建完毕,点击执行流程。执行结果如下:

    结果我们可以看到,我们插入的3个图片都返回了。这是因为我们的SQL语句写的条件是limit 5,这表示查回与输入图片相似的5张图片。因为数据库就3张图片,所以查询时就都返回了。但我们可以通过结果的idScore列看到,01.png的分值最低,这表示其与输入的图片最相似,而其它图片的相似程度就差了很多。为了能够得到更精准的结果,我们可以在流程里加一个过滤算子,设置一个过滤条件,过滤掉那些明显不相似的图片。比如我们将过滤条件设置为idScore < 100,那么只有01.png这个图片会被筛选到了。

总结

    本文介绍了如何使用HuggingFists工具,一行代码不写,迅速搭建起图片检索系统。除文中介绍的几个算子外,HuggingFists还内置了很多其它功能的算子,对于喜欢DIY的朋友,可以下载一个玩玩看了。

http://www.lryc.cn/news/278581.html

相关文章:

  • Elasticsearch--Master选举
  • 微服务实战系列之Filter
  • 使用GPT大模型调用工具链
  • C语言实现bmp图像底层数据写入与创建
  • 基于BP神经网络的定位算法,基于BP神经网络定位预测
  • Java Http各个请求类型详细介绍
  • python函数装饰器参数统计调用时间和次数
  • 机器学习之集成学习AdaBoost
  • 行云部署成长之路 -- 慢 SQL 优化之旅 | 京东云技术团队
  • Windows权限提升
  • win系统搭建Minecraft世界服务器,MC开服教程,小白开服教程
  • word2vec中的CBOW和Skip-gram
  • 在ios上z-index不起作用问题的总结
  • 力扣labuladong一刷day59天动态规划
  • pyenv环境找不到sqlite:No module named _sqlite3
  • Histone H3K4me2 Antibody, SNAP-Certified™ for CUTRUN
  • 我用 Laf 开发了一个非常好用的密码管理工具
  • windows项目部署
  • http首部
  • 2024.1.8 Day04_SparkCore_homeWork
  • 09.简单工厂模式与工厂方法模式
  • DHCP,怎么在Linux和Windows中获得ip
  • 读写锁(arm)
  • 【第33例】IPD体系进阶:市场细分
  • response 拦截器返回的二进制文档(同步下载excel)如何配置
  • 为什么要使用云原生数据库?云原生数据库具体有哪些功能?
  • 05- OpenCV:图像操作和图像混合
  • 人脸识别(Java实现的)
  • Maven 依赖管理项目构建工具 教程
  • 供应链+低代码,实现数字化【共赢链】转型新策略