当前位置: 首页 > news >正文

2024美赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录

  • 0 赛题思路
    • 1 问题要求
    • 2 假设约定
    • 3 符号约定
    • 4 建立模型
    • 5 模型求解
    • 6 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 问题要求

现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图
在这里插入图片描述
要求:

  • (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
  • (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
  • (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
  • (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?

(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)

2 假设约定

  • 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
  • 2 室内不受外界光源影响;
  • 3 教室高度为2.5米;
  • 4 不考虑光的反射;
  • 5 线光源发光是均匀的.

3 符号约定

在这里插入图片描述

4 建立模型

在这里插入图片描述
在这里插入图片描述

5 模型求解

在这里插入图片描述
在这里插入图片描述

6 实现代码

matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了

clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),'  ','y21=',num2str(y21),'  ','x22=',num2str(x22),'  ','y22=',num2str(y22),'  ','x23=',num2str(x23),'  ','y23=',num2str(y23),'  ','x24=',num2str(x24),'  ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1,  x12=x2,y12=y2,  x13=x3,y13=y3,  x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
li

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/278436.html

相关文章:

  • 【Deep Dive: AI Webinar】开放 ChatGPT - 人工智能开放性运作的案例研究
  • Devops相关问题及答案(2024)
  • 掌握Python设计模式,SQL Alchemy打破ORM与模型类的束缚
  • 性能分析与调优: Linux 磁盘I/O 观测工具
  • Could not erase files or folders:
  • 算法训练营第四十四天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ
  • 探索计算机网络:应用层的魅力
  • MySQL 按日期流水号 条码 分布式流水号
  • 前端导出Excel文件,部分数字前面0消失处理办法
  • 零基础学Python网络爬虫案例实战 全流程详解 高级进阶篇
  • 第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)
  • bmp图像文件格式超详解
  • Unity Meta Quest 一体机开发(十三):【手势追踪】自定义交互事件 EventWrapper
  • 13、Redis高频面试题
  • Koa学习笔记
  • HiDataPlus 3.3.2-005 搭建(个人的一点心得体会 x86 平台)
  • 【PHP】PHP实现与硬件串口交互,接收硬件发送的实时数据
  • HNU-数据库系统-作业
  • Python基础知识:整理10 异常相关知识
  • golang并发安全-select
  • 微软Visual Studio产品之Visual C++编程进阶——一维数组(画画版)
  • Moonbeam生态项目分析 — — 下一代DeFi协议HydraDX
  • Spark九:Spark调优之Shuffle调优
  • linux c多线程优先级
  • Redis在项目开发中的应用
  • mapper向mapper.xml传参中文时的乱码问题
  • 基于Docker官方php:7.1.33-fpm镜像构建支持67个常见模组的php7.1.33镜像
  • Type-C PD充电器受电端sink诱骗取电汇总:小家电应用5V9V12V15V20V28V
  • 禁用code server docker容器中的工作区信任提示
  • JSON格式插件-VUE