当前位置: 首页 > news >正文

复试 || 就业day05(2024.01.08)项目一

文章目录

  • 前言
  • 代码模拟梯度下降
    • 构建函数与导函数
    • 函数的可视化
    • 求这个方程的最小值(直接求导)
    • 求方程最小值(不令方程导为0)【梯度下降】
      • eta=0.1
      • eta = 0.2
      • eta = 50
      • eta = 0.01
      • 画出eta=0.1时的梯度下降x的变化过程
  • 总结

前言

💫你好,我是辰chen,本文旨在准备考研复试或就业
💫本文内容来自某机构网课,是我为复试准备的第一个项目
💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容
🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib

以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:

💥ACM-ICPC算法汇总【基础篇】
💥ACM-ICPC算法汇总【提高篇】
💥AIoT(人工智能+物联网)
💥考研
💥CSP认证考试历年题解

代码模拟梯度下降

import numpy as np
import matplotlib.pyplot as plt

构建函数与导函数

f = lambda x : (x - 3.5) ** 2 - 4.5 * x + 10
# 导函数
g = lambda x : 2 * (x - 3.5) - 4.5

函数的可视化

x = np.linspace(0, 11.5, 100)
y = f(x)plt.plot(x, y)
# 画出最小值点(5.75即为最小值点,具体计算即为令导数为0,见下个代码块)
plt.scatter(5.75, f(5.75), color = 'red', s = 30)

在这里插入图片描述

求这个方程的最小值(直接求导)

'''
令导数值 = 0
2 * (x - 3.5) - 4.5 = 0
2 * x = 11.5
x = 5.75
'''

求方程最小值(不令方程导为0)【梯度下降】

eta=0.1

# 给一个步幅,也就是学习率
eta = 0.1 # 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)while True:if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微break# 更新,梯度下降last_x = xx = x - eta * g(x)print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述
可以看到,最终逼近的结果为 5.750373845373813,可以认为是正确解

eta = 0.2

eta 调大之后,可以明显观察到收敛的快了

# 给一个步幅,也就是学习率
eta = 0.2# 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)while True:if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微break# 更新,梯度下降last_x = xx = x - eta * g(x)print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述

eta = 50

当然,eta 的值也不可以设的过大,会造成发散

# 给一个步幅,也就是学习率
eta = 50# 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)while True:if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微break# 更新,梯度下降last_x = xx = x - eta * g(x)print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述
这是一个死循环

eta = 0.01

如果 eta 的值设的比较小,会收敛,但是会很慢

# 给一个步幅,也就是学习率
eta = 0.01# 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)while True:if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微break# 更新,梯度下降last_x = xx = x - eta * g(x)print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述

画出eta=0.1时的梯度下降x的变化过程

# 多两行下述代码:
# x_ = [x]
#     x_.append(x)eta = 0.1 x = np.random.randint(0, 12, size = 1)[0]last_x = x + 0.1precision = 0.0001
print('-----------------随机的x是:', x)x_ = [x]   # Python中的列表
count = 0  # 记录梯度下降的次数while True:if np.abs(x - last_x) < precision:   breaklast_x = xcount += 1x = x - eta * g(x)x_.append(x)     # 把更新后的 x 加入到 x_ 中print('+++++++++++++++++梯度下降的次数是:', count)# x1 是 Numpy 的数组
x1 = np.linspace(0, 11.5, 100)
y1 = f(x1)
plt.figure(figsize = (12, 9))   # 调整图像大小
plt.plot(x1, y1)# 散点图
x_ = np.array(x_)   # x_ 需要从 Python 列表转为 Numpy 的数组,否则无法绘图
plt.scatter(x_, f(x_), color = 'red', s = 30)

在这里插入图片描述

总结

模拟的时候还发现了 eta 设置的过小算出来的值也是错误的现象,知道了原因后会补在这里

在这里插入图片描述

http://www.lryc.cn/news/276233.html

相关文章:

  • 基于商品列表的拖拽排序后端实现
  • 小游戏实战丨基于PyGame的贪吃蛇小游戏
  • AOP(面向切面编程)基于XML方式配置
  • 多线程的概念
  • DeepPurpose 生物化学深度学习库;蛋白靶点小分子药物对接亲和力预测虚拟筛选
  • Java实现责任链模式
  • rabbitmq延时队列相关配置
  • 【工具】推荐一个好用的代码画图工具
  • Leetcode14-判断句子是否为全字母句(1832)
  • HTTP和TCP代理原理及实现,主要是理解
  • MySQL中的连接池
  • css计时器 animation实现计时器延时器
  • 【win11 绕过TPM CPU硬件限制安装】
  • k8s的yaml文件中的kind类型都有哪些?(清单版本)
  • Jetpack Room使用
  • HarmonyOS应用开发之ArkTS语言学习记录
  • windows 下 mongodb6.0 导入导出json文件
  • 如何给 unplugin-vue-components/vite 写一个简单的 resolver
  • MYSQL篇--索引高频面试题
  • 视频号小店怎么上架商品?实操分享,干货满满!
  • Python 常用数据类型
  • 基于yolov2深度学习网络的车辆行人检测算法matlab仿真
  • 【QT】中英文切换
  • vue实现代码编辑器,无坑使用CodeMirror
  • MR实战:网址去重
  • linux 内核编译安装
  • hash基础知识(算法村第五关青铜挑战)
  • Linux第8步_USB设置
  • 第五节 强制规范commit提交 .husky/commit-msg: no-such file or directory问题解决办法
  • 2024年了,难道还不会使用谷歌DevTools么?